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Abstract. This work aimed to obtain a validated model for the prediction of retention times of compounds 
isolated from Origanum heracleoticum, Origanum vulgare, Thymus vulgaris, and Thymus serpyllum essential 
oils. In total 68 experimentally obtained retention times of compounds, which were separated and detected by 
GC-MS were further used to build the prediction models. The quantitative structure–retention relationship was 
employed to foresee the Kovats retention indices of compounds acquired by GC-MS analysis, using eight 
molecular descriptors selected by a genetic algorithm. The chosen descriptors were used as inputs for the four 
artificial neural networks, to construct a Kovats retention indices predictive quantitative structure–retention 
relationship model. The coefficients of determination in the training cycle were 0.830; 0.852; 0.922 and 0.815 
(for compounds found in O. heracleoticum, O. vulgare, T. vulgaris and T. serpyllum essential oils, respectively), 
demonstrating that these models could be used for prediction of Kovats retention indices, due to low prediction 
error and high r2. 
Keywords: Origanum spp.; Thymus spp; QSRR; artificial neural networks. 
 
Resumen. El objetivo de este trabajo es la obtención de modelos validados para la predicción del tiempo de 
retención de los compuestos aislados de aceites esenciales de Origanum heracleoticum, Origanum vulgare, 
Thymus vulgaris y Thymus serpyllum. Se han obtenido un total de 68 tiempos de retención de compuestos, 
separándose y detectándose por cromatografía de gases con detección por espectrometría de masas (GC-MS) 
con posterior desarrollo de modelos de predicción.  La relación cuantitativa estructura-retención ha sido 
utilizada para predecir el índice de retención Kovats de los compuestos obtenidos por análisis de GC-MS, 
utilizando ocho descriptores moleculares seleccionados mediante algoritmo genético. Los descriptores 
seleccionados han sido utilizados como entrada para las cuatro redes neuronales artificiales y así elaborar los 
índices predictivos del modelo de relación cuantitativa estructura-retención.  Los coeficientes de determinación 
en el ciclo de entrenamiento fueron de 0.830; 0.852; 0.922 y 0.815 (para los compuestos identificados en los 
aceites esenciales del O. heracleoticum, O. vulgare, T. vulgaris y T. serpyllum respectivamente) demostrando 
así que estos modelos son útiles en la predicción de los índices de retención de Kovats con un error de bajo 
predicción y alta r2.  
Palabras clave: Origanum spp.; Thymus spp; QSRR; redes neuronales artificiales. 
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Introduction 
    

The genus Origanum and Thymus belong to the Menthae tribe in the Lamiaceae family. For centuries, 
many species of this family have traditionally been collected and used for treating various ailments. Nowadays, 
this species arose interest in the cosmetic, pharmaceutical, and food industry, due to their antimicrobial, 
antioxidant, and antitumor properties [1-4]. The evaluation of the chemical composition EOs (essential oils) 
profiles is crucial in determining the components responsible for their chemical and biological activity. The 
constituents of essential oil of these spices include oxygenated monoterpenes, monoterpene hydrocarbons, 
oxygenated sesquiterpenes, sesquiterpene, hydrocarbons, and others. These entire compounds have been 
identified by gas chromatography-mass spectrometry (GC–MS). Gas chromatography (GC) coupled with mass 
spectrometry is the most common technique for the identification of these volatile plant oils. The 
chromatographic retention profile for molecules can be measured using different parameters which include: 
retention time, linear-temperature programmed retention index, Lee retention index, boiling point correlation, 
equivalent chain length, Kovats retention distance, and the most popular one the Kovats retention index (KRI) 
[5,6]. The KRI represents a relative retention parameter normalized concerning n-alkane series as a standard. 

Most of the Origanum species are locally distributed within the Mediterranean region where they grow 
in mountainous areas on an island, and because of that, the rate of endemism is high (about 70 %). However, 
O. vulgare is characterized by the largest distribution and can be found throughout the Mediterranean region, 
in most parts of the Euro-Siberian and the Iran-Turanian regions [5]. Apart from that, O. vulgare is the most 
variable species of the genus. Furthermore, O. heracleoticum is endemic to the Mediterranean area [6]. 

The Mediterranean region can be described as the center of the genus Thymus, however, the species 
are widespread worldwide in temperate areas. Due to the diversity and plasticity of these plants and their 
geographical range, they differ concerning their morphological features and metabolism, which influences their 
chemical constitution. Within individual species, particularly T. vulgaris and T. serpyllum, there are chemical 
variations that are characterized by different plant oil compositions, usually without any morphological 
differences [7]. 

Quantitative structure-chromatographic retention relationship (QSRR) describes the chemical 
structure as per their physicochemical or biological properties. The chemical structure is modelled by molecular 
descriptors, and a goal to obtain a statistically significant relationship is obtained by investigating a large set of 
the property parameters. GC-MS data are widely used in QSRR models, due to the ease to obtain a large number 
of quantitatively comparable, reproducible and precise retention data for large sets of the analytes. Lately, 
numerous publications are related to the QSRR analysis [5-12]. QSRR models are based on the experimental 
value of the retention index and provide a promising faster way for predicting the retention index of EOs using 
the descriptors derived solely from the molecular structure- QSRRs and retention prediction in general have 
numerous applications. From identification of the most informative structural molecular descriptors with 
respect to retention mechanisms, prediction of retention for new EOs whose experimental data are 
undetermined, up to comparison of different chromatographic columns and determination of physical properties 
(lipophilicity, dissociation constants, relative bioactivities). 

 In this study, we used the artificial neural network (ANN) was known for its excellent predictability 
in our previous investigations and through the published literature [13,14].  

 This work aimed to establish a validation model for prediction of Kovats retention indices of essential 
oils compounds from O. heracleoticum, O. vulgare, T. vulgaris and T. serpyllum trough QSRR models, genetic 
algorithm (GA) and the ANN technique. 
 
 
Experimental 
 
Materials And Methods 
Plant material  

Two Origanum species: O. heracleoticum and O. vulgare, as well as two Thymus species: T. vulgaris 
and T. serpyllum were used in this study. Voucher specimens (IC1312, IC1212, IC1112, and IC1012) were 
confirmed and deposited at the Institute of Medicinal Plant Research “Dr Josif Pančić” from Belgrade, Serbia. 
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Essential oil extraction 

Prior to extraction, plant material was air dried, packed in paper bags and kept in a dark and cool place. 
EO’s were extracted from dried and grinded plant materials (100 g) by hydro-distillation using Clevenger type 
apparatus for 4 h. The extracted EO’s were separated and dried over anhydrous sodium sulfate, stored in sealed 
dark vials and kept under refrigeration at 4 °C. The yield of each EO was expressed as a volume percent (% 
v/w), calculated relative to 100 g of dried plant material. Identification of essential oil components (EOC’s) 
was done by gas chromatography (GC-FID) and mass spectrometry (GC-MS) analysis. 
 
Essential oil analysis 

Gas chromatography analysis of the essential oils were carried out on an HP-5890 Series II GC 
apparatus [Hewlett-Packard, Waldbronn (Germany)], equipped with the split–splitless injector and automatic 
liquid sampler (ALS), attached to HP-5 column (25 m × 0.32 mm i.d. and 0.52 μm film thickness) and fitted 
with a flame ionization detector (FID). Carrier gas was H2 (1 ml/min), with a split ratio of 1:30, injector 
temperature was 250 °C, detector temperature 300 °C, while column temperature was linearly programmed 
from 40 to 260 °C with a rate of change of the 4 °C/min, and then kept isothermally at 260 °C for 10 min. 
Solutions of essential oil in ethanol (10 mg/ml) were consecutively injected in an amount of 1μl. Area percent 
reports, obtained as result of standard processing of chromatograms, were used as a base for the quantification 
analysis. 

The same analytical conditions as those mentioned for GC-FID were employed for GC-MS analysis, 
along with column HP-5MS (30 m × 0.25 mm i.d. and 0.25 μm film thickness), using HP G 1800C Series II 
GCD system [HewlettPackard, Palo Alto, CA (USA)]. Helium was used as carrier gas (1.8 ml/min). The transfer 
line was heated at 260 °C. The mass spectra were obtained in EI mode, with an ionization voltage of 70 electron 
volt (eV); in the range from 40 to 450 m/z. The amount of the injected sample, dissolved in ethanol (10 mg/ml) 
was 0.2 μl. The components of the essential oil were identified by comparison of their mass spectra to those 
from Wiley 275 and NIST/NBS (NIST–National Institute of Standards and Technology / NBS-National Bureau 
of Standards) libraries, using different search engines. Identification of the compounds was achieved by 
comparing their Kovats retention indices and mass spectra with those reported in the literature [15] and 
supplemented by the Automated Mass Spectral Deconvolution and Identification System software (AMDIS 
ver. 2.1), GC-MS library [16]. The experimental values for Kovats retention indices were determined using 
calibrated Automated Mass Spectral Deconvolution and Identification System Software (AMDIS ver. 2.1), 
GCMS library [16], and also compared to those from available literature [15] and used as additional tool to 
approve MS findings. The proportion of the essential oil constituents were expressed as percentages obtained 
by peak area normalization, all the relative response factors were entered as one. 
 
QSRR analysis 

The molecular structures data set was presented using .smi files, obtained from the PubChem database. 
The calculation of specified molecular descriptors of each compound in the datasets was done by PaDel-
descriptor software [17]. This program gives a huge amount of data for each observed compound, and it is 
necessary to select the most relevant molecular descriptors for Kovats retention indices prediction by using a 
genetic algorithm (GA) and factor analysis [18]. GA is a stochastic optimization method inspired by evolution 
theory [19,20]. Each gene of the population, defined by a "chromosome", represented a subset of the descriptors. 
The number of elements on each “chromosome” (i. e., observed chemical compounds) was equal to the number 
of the molecular descriptors obtained in the PaDel-descriptor. The population of the first GA generation was 
selected randomly. Each gene gained a value of 1 if its corresponding descriptor was included in the subset; 
otherwise, it gained zero value. In this work, it was used to select the most appropriate molecular descriptors 
for developing the reliable Kovats retention indices predictive models for compounds in O. heracleoticum, O. 
vulgare, T. vulgaris, and T. serpyllum essential oil, obtained by GC-MS analysis. The correlation between the 
descriptors was examined and collinear descriptors were detected using correlation analysis. Statistical 
investigation of the data has been performed mainly by the Statistica 10 software [21].  
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Artificial neural network (ANN) 
The four multi-layer perceptron (MLP) architecture were used to build ANN models for the prediction 

of Kovats retention indices for GC-MS data, which is a well-known and proven mathematical tool, quite capable 
of approximating nonlinear functions [22]. Broyden–Fletcher–Goldfarb-Shanno (BFGS) algorithm was used 
for ANN modelling. All data points were randomly used to train and develop the ANN; 70 % of data points for 
training, 15 % of the data for validations, and 15 % of data for testing the process [23,24]. The optimization 
process was performed based on validation error minimization. ANN calculations were performed with 
Statistica10 [21].  
 
Global sensitivity analysis 

Yoon’s interpretation method was used to determine the relative influence of molecular descriptors on 
Kovats retention indices [25]. This method was applied based on the weight coefficients of the developed ANN. 
 
 
Results and discussion  
 

According to our previous study [29] in the O. heracleoticum, O. vulgare, T. vulgaris and T. serpyllum 
essential oils 68 compounds were detected, which represented 97.26-98.32 % of total oil composition, GC-MS 
and GC-FID chromatograms are given in supplementary material. 

The dominant class in all samples was oxygenated monoterpenes (from 48.37 to 73.65 % depending 
on the sample). On average, the most dominant was carvacrol with 34.74 % on average (ranged between 5.56 
and 16.57 % in T. serpyllum and T. vulgaris, respectively, and 58.84 and 69.98 % in O. vulgare and O. 
heracleoticum, respectively), followed by their isomer thymol with 21.02 % on average (ranged from 1.62-4.76 
% in Origanum, and 34.48 and 43.23 % in Thymus). These results are in correspondence with numerous 
previous research [2,26,27,28]. Furthermore, p-cymene was present in high amount, with 20.29 % on average 
(ranged between 7.7 and 34.84 %), while γ-terpinene was present with significantly lower content, 4.67 % on 
average,[29].  

It is interesting to note that molecular orbitals of p-cymene, carvacrol and thymol, are located on the 
benzene rings, in the case of thymol and carvacrol molecules the highest occupied molecular orbital (HOMO) 
also includes oxygen atoms. Furthermore, the difference in activities between thymol and carvacrol resides in 
the hydroxyl group position relative to the larger aliphatic chain. Thymol has the hydroxyl group in meta 
position while carvacrol contains the hydroxyl group in the ortho position [31]. Indeed, a pair of molecules with 
a high disparity index indicates that the molecular structures are likely similar, however, the activities differ 
significantly [32]. These compounds (molecular descriptors) may be useful for target identification of essential 
oils or their major components in antimicrobial/drug development [31]. 
 
QSRR models  

The PaDel-descriptor software was used in this investigation, for calculation and the identification of 
the structural descriptors which represents the chemical structures in O. heracleoticum, O. vulgare, T. vulgaris 
and T. serpyllum, which were identified by GC-MS, as mentioned in the previous section. Prior the GA 
calculation, the factor analysis was performed to eliminate the descriptors with equal or almost equal 
correlations, and only one of the inter-correlated descriptors remained in the GA calculation. As a result of this 
preliminary consideration, only cca., 400 descriptors remained for GA calculation. GA was used to select the 
most appropriate molecular descriptors for Kovats retention indices prediction, and the selection of the most 
relevant descriptors was realized using the evolution simulation [33,34]. The number of the elements was kept 
relatively low to maintain a small subset of descriptors [35]. As a result, the probability of generating zero for 
a gene was set at least 60% greater than the probability of generating the value of 1. The used operators were 
crossover and mutation. The probability of application of these operators was varied linearly with generation 
renewal (0.5 % for mutation and 90 % for a crossover). A population size of 100 individuals was chosen for 
GA, and evolution was allowed over 50 generations. The evolution of the generations was stopped when 90 % 
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of the generations took the same fitness. As a result, the eight most significant molecular descriptors selected 
by GA were:  

o Barysz matrix descriptors  
 VE2 DzZ - Average coefficient sum of the last eigenvector from Barysz matrix / weighted by 

atomic number,  
 VR1 Dzi - Randic-like eigenvector-based index from Barysz matrix / weighted by first ionization 

potential),  
o 2D Autocorrelation descriptors  
 AATSC6v - Average centered Broto-Moreau autocorrelation - lag 6 / weighted by van der Waals 

volumes,  
 AATSC3c - Average centered Broto-Moreau autocorrelation - lag 3 / weighted by charges,  
 AATSC1e - Average centered Broto-Moreau autocorrelation - lag 1 / weighted by Sanderson 

electronegativities,  
 MATS7s - Moran autocorrelation - lag 7 / weighted by I-state,  
 AATSC5s - Average centered Broto-Moreau autocorrelation - lag 5 / weighted by I-state,  
 ATSC5i - Average centered Broto-Moreau autocorrelation - lag 5 / weighted by first ionization 

potential),  
 
The molecular descriptors were presented in Supplementary Table 1. 
Essential oils are a complex mixture of volatile, low molecular weight organic compounds. 

Correlations between the GC retention indices of these compounds and their molecular structures can provide 
very important information about the effects and the possible mechanisms of absorption and elution [36]. 
However, molecular size is an important descriptor as most physicochemical properties and many biological 
properties are strongly size-related. The empirical success of the van der Waals radius concept gives a good 
starting point for a computational approach, even if in an exact quantum chemical description, the electron 
cloud has no well-defined boundary surface [37]. According to this, it can be said that molecular descriptors 
covering different information of molecular structures. Furthermore, the modeling and prediction of the 
physicochemical properties of organic compounds is an important objective in many scientific fields [38]. 

Separation of compounds in GC-MS and their Kovats retention indices is linked to affinity towards 
mobile and stationary phase. The affinity and solubility of separated molecules directly depend on their 
chemical structure and physicochemical properties, which could be expressed by molecular descriptors.  

Eight molecular descriptors were utilized for predictions of Kovats retention indices in the four ANN 
models, and their values were presented in Supplementary Table 1. 

The Barysz matrix descriptors were derived from weighted molecular graphs. The applied weighting 
schemes are based on atomic mass, atomic van der Waals volume, Sanderson electronegativity, and atomic 
polarizability. The weighting scheme based on the atomic weight Z can be applied to derive the Barisz matrix, 
[35]. The 2D-autocorrelation descriptors in general explain how the values of certain functions, at intervals 
equal to the lag, are correlated. In the case of the descriptors used to develop the model, lag is the topological 
distance d and the atomic properties are the functions correlated. There are slight differences between the 2D-
autocorrelation descriptors ATSd, MATd, GATSd; in general, they describe how the considered property is 
distributed along with the topological structure. The most important factor in interpreting them in the model is 
the topological distance once weighted equally [35].  

According to Pearson’s correlation coefficients, there was a rather poor correlation between all 
autocorrelation descriptors (Table 1). Hence, utilized molecular descriptors were appropriate to predict Kovats 
retention indices of compounds in O. heracleoticum, O. vulgare, T. vulgaris, and T. serpyllum by four 
multivariate ANN models [39]. Detailed explanations about the descriptors were found in the Handbook of 
Molecular Descriptors [35]. These descriptors encode different aspects of the molecular structure and were 
applied to develop the QSRR models.  
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Table 1. The correlation coefficient matrix for the selected descriptors by GA. 

 AATSC3c AATSC6v AATSC1e AATSC5s MATS7s VE2 
DzZ 

VR1 
Dzi 

ATSC5i 0.100 0.066 -0.059 0.128 0.105 -0.064 0.025 
 p=0.416 p=0.595 p=0.636 p=0.300 p=0.392 p=0.605 p=0.837 

AATSC3c  -0.116 0.037 -0.073 0.195 0.060 0.074 
  p=0.346 p=0.763 p=0.553 p=0.115 p=0.630 p=0.546 

AATSC6v   -0.160 -0.180 -0.133 -0.152 0.141 
   p=0.191 p=0.142 p=0.278 p=0.138 p=0.253 

AATSC1e    0.080 -0.020 -0.150 0.037 
    p=0.519 p=0.872 p=0.223 p=0.767 

AATSC5s     -0.007 -0.053 0.010 
     p=0.954 p=0.669 p=0.939 

MATS7s      -0.199 0.162 
      p=0.104 p=0.131 

VE2 DzZ       -0.138 
       p=0.150 

 
 

The calibration and predictive capability of a QSRR model should be tested through model validation. 
The most widely used squared correlation coefficient (r2) can provide a reliable indication of the fit of the 
model, thus, it was employed to validate the calibration capability of a QSRR model. 
 
Artificial neural network (ANN) 

To explore the nonlinear relationship between Kovats retention indices and the descriptors selected by 
GA, ANN technique was used to build four predictive models. The following neural networks: MLP 8-7-1, 
MLP 8-7-1, MLP 8-10-1, and MLP 8-4-1 were constructed to predict the retention time of compounds isolated 
from Origanum heracleoticum, Origanum vulgare, Thymus vulgaris, and Thymus serpyllum essential oils, 
respectively. The ability to generalize the model was evaluated by the validation test set. The coefficients of 
determination during the training cycle were 0.830; 0.852; 0.922 and 0.815, respectively, indicating that these 
models could be used for the prediction of Kovats retention indices, due to low prediction error and high r2. 
The statistical results of these four networks are shown in Table 2. 
 
Table 2. ANN model summary (performance and errors), for training, testing and validation cycles, for 
prediction of Kovats retention indices of compounds isolated from O. heracleoticum, O. vulgare, T. vulgaris 
and T. serpyllum essential oils. 

Net. 
name 

Performance Error 
Train. 

algorithm 
Error 

function 
Hidden 

activation 
Output 

activation 
Train. Test. Valid. Train. Test. Valid. 

MLP 8-7-1 0.830 0.906 0.933 6.8E+03 4.7E+03 6.2E+03 BFGS 8 SOS Logistic Logistic 
MLP 8-7-1 0.852 1.000 1.000 5.2E+03 2.8E+03 2.7E+04 BFGS 10 SOS Logistic Tanh 
MLP 8-10-1 0.922 0.859 0.985 4.0E+03 2.9E+03 1.4E+03 BFGS 33 SOS Logistic Logistic 
MLP 8-4-1 0.815 0.849 0.913 7.2E+03 1.0E+04 5.7E+03 BFGS 23 SOS Tanh Tanh 

*Performance terms represent the coefficients of determination, while error terms indicate a lack of data for the ANN 
model. 
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The quality of the four models fit was tested in Table 3, with the lower χ2, MBE, RMSE, and MPE values 
showing the better fit to the experimental results [40]. 
 
Table 3. The "goodness of fit" tests for the developed ANN model. 

Network χ2 RMSE MBE MPE 
MLP 8-7-1 12793.488 111.872 -9.440 7.380 
MLP 8-7-1 12462.578 110.330 4.151 7.555 

MLP 8-10-1 7431.659 85.434 10.014 5.281 
MLP 8-4-1 15030.285 121.537 -16.855 8.066 
χ2 - reduced chi-square, MBE - mean bias error, RMSE - root mean square error, MPE – mean 
percentage error. 

 
 

The ANN model had an insignificant lack of fit tests, which means the model satisfactorily predicted 
the Kovats retention indices of certain compounds in O. heracleoticum, O. vulgare, T. vulgaris and T. serpyllum 
essential oil obtained by GC-MS chromatography utilizing the genetic algorithm (GA) variable selection 
method. 

The QSRR model was build according to ANN model of the GC-MS data, i. e., the Kovats index data 
in the range of 917.3-1674.2 for O. vulgare and T. vulgaris. The developed ANN model delivers the most 
precise results within the range in which it was build. Therefore, this model would accurately predict the new 
compounds (like: monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, 
oxygenated sesquiterpenes and hydrocarbones), especially in the specified Kovats index range. 

The predicted Kovats retention indices are presented in Supplementary Table 1, confirm the good 
quality of the constructed ANN, by showing the relationship between the predicted and experimental Kovats 
retention indices values. Graphical comparison between experimentally obtained Kovats retention indices of O. 
heracleoticum, O. vulgare, T. vulgaris and T. serpyllum essential oils composition (KRIa) and the retention time 
indices predicted by the four ANN models (KRIc

.) were presented in Fig. 1. 
 

 
 
Fig. 1. Retention time indices of the (a) Origanum heracleoticum, (b) Origanum vulgare, (c) Thymus vulgaris 
and (d) Thymus serpyllum essential oils composition, from: experimentally obtained GC-MS data (KRIa) and 
predicted by the ANN (KRIc

.). 
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Obtained results reveal the reliability of the ANN models for predicting the Kovats retention indices 
of compounds in O. heracleoticum, O. vulgare, T. vulgaris, and T. serpyllum essential oils obtained by GC-MS 
analysis. 

 
Global sensitivity analysis- Yoon’s interpretation method 

The influence of the eight most important input variables identified using a genetic algorithm on the 
Kovats retention indices was studied in this section. According to Fig. 2, AATSC6v was the most important 
molecular descriptor for chemical compounds in Origanum heracleoticum and Origanum vulgare, with a 
relative importance of 21.68 and 21.90 %, while the most important molecular descriptor for chemical 
compounds in Thymus vulgaris was MATS7s (relative importance of 22.44 %). Several molecular descriptors 
were of almost equal importance in the QSRR model for Thymus serpyllum: VE2 DzZ, AATSC6v, MATS7s, 
and VR1 Dzi, with a relative importance of 14.49; 14.37; 14.28, and 14.27 %. 
 

 
 
Fig. 2. The relative importance of the molecular descriptors on RI, determined using Yoon interpretation 
method. 
 
 
Conclusion 
 

Validation model for prediction of Kovats retention indices of essential oils compounds from O. 
heracleoticum, O. vulgare, T. vulgaris and T. serpyllum trough QSRR models, show eight molecular descriptors 
were suggested by a GA which were utilized as inputs for the ANN models. The results demonstrated that the 
ANN models were adequate in predicting the Kovats retention indices of the compounds in selected plant 
species. The coefficients of determination for the training cycle were close to 1, which is a good indication that 
these models could be used as a fast-mathematical tool for prediction of Kovats retention indices, due to low 
prediction error and moderately high r2. Suitable models with high statistical quality and low prediction errors 
were derived, and it could be further used for estimation of Kovats retention indices of newly detected 
compounds. 
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