
Article
J. Mex. Chem. Soc. 2017, 61(1), 60-66
© 2017, Sociedad Química de México

ISSN 1870-249X

GPU Algorithm for the Scaled Opposite-Spin (SOS) MP2 Energy Evaluation
Luis Ángel Martínez-Martínez1,2 and Carlos Amador-Bedolla1*

1 Facultad de Química, Universidad Nacional Autónoma de México, México D.F. 04510, México
* Corresponding author
 Email address: carlos.amador@unam.mx (Carlos Amador-Bedolla)
2 Current address: Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA 92093

Received September 7th, 2016; Accepted February 3rd, 2017.

Abstract. The most computationally intensive part of the SOS-MP2
algorithm for the calculation of the correlation energy [1], as executed
in Q-Chem, is implemented for use in a graphical processing unit
(GPU). Our approach adds new routines to the library initially devel-
oped by Aspuru-Guzik and co-workers [2], aiming at maximization of
bandwidth and performance, by taking advantage of the asynchronous
CPU-GPU communication capability of modern GPUs. These changes
permit an almost six-fold acceleration in the correlation energy calcu-
lation of linear alkanes. This was achieved employing a NVIDIA Tesla
K40C (Kepler) GPU and the Compute Unified Device Architecture
(CUDA).
Keywords: GPUs; SOS-MP2; correlation energy; Q-Chem.

Resumen. La parte computacional más intensiva del algoritmo SOS-
MP2 para el cálculo de la energía de correlación [1], como se lleva a
cabo en Q-Chem, es implementada para su uso en unidades de proceso
gráfico (GPU). Nuestro método agrega nuevas rutinas a la biblioteca
inicialmente desarrollada por Aspuru-Guzik y colaboradores [2], con
la intención de maximizar el ancho de banda y la eficacia al aprove-
char la comunicación asíncrona GPU-CPU presente en GPUs moder-
nos. Estos cambios permiten una aceleración por un factor de casi seis
en el cálculo de la energía de correlación de alcanos lineales. Los re-
sultados se obtuvieron al emplear un GPU NVIDIA Tesla K40C (Ke-
pler) y la Arquitectura de Dispositivo de Cómputo Unificado (CUDA).
Palabras Clave: GPUs; SOS-MP2; energía de correlación; Q-Chem.

1. Introduction

The use of accelerators to improve scientific computing perfor-
mance is not exclusive of recent years. Their early application
in scientific code can be traced back to the beginning of the
1980s, when a floating point accelerator was implemented in
computers [3]. Recently, Graphic Processing Units (GPUs)
have attracted a lot of attention, as can be seen in their extensive
use in the high performance computing field.

Early use of GPUs was precluded by their inherent pro-
gramming complexity, which relied on either OpenGL or Di-
rectX graphic programming languages. This issue limited
general purpose computation on GPUs and circumventing this
limitation was the motivation for additional efforts [4]. Howev-
er, the release of NVIDIA’s compute unified device architecture
(CUDA [5]) provided a high level abstraction model through
the incorporation of relatively simple extensions of the standard
C language, which permitted the development of libraries that
are useful for common problems in quantum chemistry and sol-
id state physics, such as Fourier transforms (CUFFT [6]) and
linear algebra (cuBLAS [7]).

The success of this model is evident: since the CUDA re-
lease, a variety of codes have been developed for molecular
dynamics applications [8, 9], astrophysics simulations [10] and
electronic structure methods. Within the last mentioned appli-
cations, special efforts have been made concerning the GPU
implementation of Hartree-Fock (HF) [11, 12], evaluation of
electron repulsion integrals [13, 14], density functional theory

[15], geometry optimization [16], solvation models [17], reso-
lution of the identity MP2 (RI-MP2) [2, 18], coupled-cluster
theory (CC) [19, 20, 21] and quantum Monte-Carlo [22]. In
addition, popular electronic structure codes have adopted hy-
brid CPU/GPU schemes in order to speedup calculations, for
instance GAMESS [23], NWChem [24], TeraChem [25] and
Q-Chem [26].

Our work constitutes an additional effort to extend the
scope of GPU applications in electronic structure methods. We
are interested in the GPU implementation of the so-called
scaled opposite-spin second order Møller-Plesset theory (SOS-
MP2). This is a simplified and economical treatment of elec-
tronic correlation energy calculations [1]. In this approach, only
the α-β component of MP2 energy is calculated and scaled by
an empirical factor (which turns out to be 1.3), which yields
statistically improved energies and derivative properties over
the conventional MP2 method. In addition, the introduction of
the Resolution of the Identity (RI) approximation, and a La-
place transform results in an improved method without any
fifth order computational steps, in contrast with the original
MP2 formulation.

A similar effort has been carried out recently by the intro-
duction of a new SOS-MP2 algorithm by Maurer et al. [27] in
which they reduce the scaling by modifying the rate determin-
ing step in such a way that it is efficiently evaluated in a GPU
without using any GPU-based linear algebra library. However,
we believe that our present work is still relevant as it comple-
ments the one initiated by Aspuru-Guzik and co-workers [2],

GPU Algorithm for the Scaled Opposite-Spin (SOS) MP2 Energy Evaluation 61

by adding the non-blocking feature to the set of routines that
constitutes the library in development. This has the advantage
of reducing the programming effort in the addition of new ma-
trix-multiplications related algorithms, at which the program-
mer could simply call a single function that automatically
carries out the whole process of the non-blocking calculation.

In this work, the main details concerning the GPU im-
plementation of the most computational intensive part of the
SOS-MP2 algorithm of Q-Chem, are exposed. This article is
organized as follows: in the Theory and Implementation sec-
tion, the theoretical basis of the SOS-MP2 algorithm are pre-
sented and the details of the implementation process and the
use of asynchronous calls in CUDA as an option to improve
performance are described. In the Results section, the most im-
portant results concerning the process of benchmarking are dis-
cussed. In the Discussion section we comment on the speedups
observed by the use of this GPU implementation. Finally in the
Conclusions section we summarize our results.

2. Theory and Implementation

2.1. SOS-MP2 method

The theoretical basis of the SOS-MP2 method was reported by
Head-Gordon and co-workers [1]. In this method, the energy is
expressed as a series of matrix multiplications (within a dis-
crete quadrature that involves Q points), according to:

∑∑∑∑ ∑∑= − = −
α β

α β
2E B B B B X XMP

OS

q

Q

ia jb KL
ia
K

jb
K

ia
L

jb
L

q

Q

KL
KL KL (1)

Here, the major computational task consists in the con-
struction of the X matrix (or matrices, if open shell), which is
defined in terms of three-center bielectronic integrals:

∑=α
α

X B BKL
ia

ia
K

ia
L (2)

∑= −(|)(|) 1/2B ia L L Kia
K

L

N

 (3)

In Eq. 2, Bia
K results from the RI approximation for the

evaluation of four-center integrals, and the scaled orbitals for
each quadrature point are given by

φ φ ε= 



exp 1

2

1
8w ti i q i q (4)

φ φ ε= −

exp 1

2
,

1
8w ta a q a q (5)

are a consequence of the numerical integration of

EMP2
OS = −

ia

α

∑
jb

β

∑
ia| jb()2
Δ jb
ia , (6)

according to

EMP2
OS = −

0

∞

∫dt
ia

α

∑
jb

β

∑ ia|jb()2 exp −Δ jb
ia t()

= −
q

Q

∑wq
ia

α

∑
jb

β

∑ ia|jb()2 exp −Δ jb
ia tq()

 = −
q

Q

∑
ia

α

∑
jb

β

∑ ia|jb()2.

 (7)

Here, ∆ jb
ia = εa + εb − ε i − ε j, and ε ε ε ε(), , i j a b are the en-

ergies, in the canonical basis, of occupied (virtual) orbitals.
In Q-Chem, for each quadrature point q, the X matrix (or

matrices, if open shell) is constructed through the evaluation of
Eq. 1. This step is fourth order in molecular size.

In actual Q-Chem SOS-MP2 calculations, the algorithm is
timed in the six main steps that are illustrated in Figure 1,
namely 1) construction and inversion of the (P | Q) matrix,
2) construction of the (ia | P) matrix, 3) construction of Bia

Q ,
4) scaling of the Bia

Q coefficients, 5) construction of the X ma-
trices and 6) increment of energy.

It is worth noting that the SOS-MP2 method preserves the
size-consistency property given that the OS component of the
MP2 energy conserves it, even though, it is possible that due to
its approximate nature the size-consistency property might
brake down in unexpected situations. Some physical deficien-
cies are known: firstly, it underestimates the correlation energy
in the limit of long separation, due to the fact that the OS com-
ponents and the same-spin (SS) ones are equal in this limit; and,

Figure 1. Pseudocode showing the main steps in the SOS-MP2 energy
evaluation algorithm in Q-Chem. In this scheme Q denotes the number
of points in the numerical quadrature introduced in Equation 7. In ac-
tual calculations, Q = 7.

62 J. Mex. Chem. Soc. 2017, 61(1) Luis Ángel Martínez-Martínez et al.

secondly, it can overestimate the correlation energy in systems
where the SS component is small [1].

2.2. Implementation

During the development of GPU applications, memory optimi-
zations are fundamental to increase performance, thus a second
goal is to maximize bandwidth in data transfer. This is com-
monly done through minimizing CPU-GPU communication,
which can be achieved by batching many small transfers into a
larger one or enhancing the bandwidth between the host and the
device by taking advantage of the non-blocking data transfers
capabilities available in modern GPUs [5]. The second option is
realized using page-locked (or pinned) memory together with
the so-called streams, which are sequences of commands (pos-
sibly issued by different host threads) that are executed in the
order issued. In contrast with common blocking data transfers,
the non-blocking version allows the programmer to issue sever-
al memory copies and kernel executions in different streams at
a time, so that the operations can be interleaved and overlapped,
which translates into a greater occupancy of the device memory
(See Fig. 2).

Data parallelism (which focuses on distributing the data
across different parallel computing nodes) is common in high
performance computing (HPC) oriented to scientific applica-
tions, an example of this model is the parallel programming
“Single Instruction Multiple Data” of CUDA. Since the on-
board memory of GPUs is a finite resource and the amount of
data to be processed in HPC fairly exceeds this limit, it is usual
to process chunks of the whole data set by the GPU in the most
demanding tasks. However, the disadvantage of this scheme is
that the number of data transfers that have to be issued is high

for large data sets. Although in this case the communication
host-device overhead can be reduced, when the algorithm al-
lows it, by reducing data transfers (which can be done by batch-
ing several chunks into a larger one and executing the kernel
sequentially over segments of the buffer). Nevertheless, in the
GPU implementation presented here, we adopted a non-block-
ing model primarily because it permits to hide memory copy
more effectively by overlapping CPU-GPU communication
(and viceversa, i. e. GPU-CPU) with kernel execution. Addi-
tionally, the bandwidth is enhanced by using pinned memory,
and different sets of data can be processed simultaneously when
the device has this capability.

In order to show that the most demanding step of the SOS-
MP2 algorithm corresponds to the one associated with Eq. 1,
we carried out a benchmark to analyze the execution times of
different steps involved in the SOS-MP2 algorithm, consider-
ing linear alkanes and employing the cc-pVDZ/rimp2-cc-pVDZ
basis set. The results are summarized in Figure 3.

From these results, it is noted that the wall-time of the en-
ergy evaluation is dominated by the fifth step of the algorithm,
which correspond to the calculation of the αXKL coefficients.
Since it has been shown that this is the most expensive step in
the algorithm, we investigated the possibility of achieving a
speedup based on the use of Graphical Processing Units by
working exclusively on this step.

Firstly, and in order to set goals regarding the speedup that
can be achieved parallelizing the section of the code corre-
sponding to the fifth step, we analyzed the trend in the percent-
age of the total wall-time SOS-MP2 energy evaluation spent in
that section as the system size increases. This trend is illustrated
in Figure 4.

Figure 2. Schematic timeline of asynchronous data transfer in the
non-blocking developed version. This approach enables the program-
mer to overlap communication with computation time by issuing data
transfers and kernel executions in different streams (streams are repre-
sented with the same color).

Figure 3. Comparison of the wall-time required by the algorithm steps
of the SOS-MP2 energy evaluation, for linear hydrocarbons. The Dun-
ning cc-pVDZ basis and the rimp2-cc-pVDZ auxiliary basis set were
used. Only the stages that account for the major percentages of total
wall-time are shown: construction of three-center integrals (ia|P), con-
struction of Bia

Q coefficients, and construction of αXKL coefficients.

GPU Algorithm for the Scaled Opposite-Spin (SOS) MP2 Energy Evaluation 63

From these results, we noted that at most, step 5 represents
approximately 82% of elapsed time, and the trend observed
seems to prevail for bigger systems. Considering this propor-
tion as parallelizable, and assuming that the 18% of elapsed
time left is sequential, we can set the expected upper-bound
speedup by employing Amdahl’s law [5]

()
=

− +

1

1
S

P P
N

 (8)

Where P is the fraction of the total serial execution time
taken by the portion of code that can be parallelized and N is the
number of processors where the parallel portion of the code
runs. By using Eq. 8, we find that the maximum speedup that
can be achieved assuming strong scaling is 5.6.

Equation 1 corresponds to the fifth step of the algorithm. In
Q-Chem this is evaluated within a loop over active occupied
molecular orbitals. If N is the number of auxiliary orbitals and
v the number of active virtual orbitals, first a matrix of size
v × N is read from a temporal file and it is multiplied by its
transpose afterwards. Then, this result is augmented into a
N × N matrix X. In order to use the GPU more effectively, we
implemented a batch scheme to group K matrices together in
such a way that each matrix is processed by an independent
stream.

3. Results

The most intensive part of the algorithm, as shown above, cor-
responds to matrix multiplications. In order to assess the perfor-
mance of this operation with two different CUDA approaches
(namely non-blocking and blocking communication versions),

we developed two different code toy models. Both models pro-
cess 100 random matrices, multiplying each of them by its
transpose and augmenting the result into a final matrix. The
difference between them resides in that one uses asynchronous
communication (non-blocking version) and the other uses the
common communication routines (blocking version). These
test codes were written with CUDA version 6.0 (CUDA driver
version 6.0) and were compared with the performance achieved
by the Intel® MKL library (Fig. 5). The calculations were car-
ried out on Intel Xeon® processors at 2.40 GHz, on a node with
the Red Hat Enterprise Linux OS, release 6.5. In the GPU cal-
culations, a Tesla K40C GPU was employed. From the results
obtained (Fig. 5), it is worth noting that the reduction in perfor-
mance due to PCI bus latency is minimal in the case of small
matrices, when the non-blocking communication approach is
employed (as a result of the computing-communication over-
lap), and the maximum observed speedup with respect to CPU
timings is approximately 6 % greater that the maximum speed-
up using blocking communication.

It is worth mentioning that the performance achieved using
the MPI model is approximately the same as that achieved
when six CPUs are used in conjunction with the use of a GPU
as a coprocessor. However, as previous work shows [28], one of
the advantages of GPU computing over a multicore approach,
is the low energy amount per floating point operation in numer-
ical computations that involve BLAS level 3 operations (ma-
trix-matrix operations). Although a mixed MPI-CUDA scheme
can be proposed to take advantage of modern clusters with sev-
eral GPUs and CPU cores, we preferred to employ the CUDA
scheme in the current study, given the availability of a matrix
multiplication library in the Q-Chem code, and considering that
the new functions can be easily incorporated in a future MPI
implementation.

For comparison and exploration purposes, the first ap-
proach used to introduce acceleration in the calculations was a
simple substitution of the subroutine that carries out the matrix

Figure 4. Percentage of total wall-time required by the SOS-MP2 en-
ergy evaluation algorithm in the construction of αXKL coefficients in
the original Q-Chem code. The systems employed here were linear
alkanes of variable chain length, and the basis sets was ccpVDZ/
rimp2-cc-pVDZ.

Figure 5. Performance comparison between the two developed CUDA
versions for data processing. Speedup=CPU elapsed time/GPU elapsed
time.

64 J. Mex. Chem. Soc. 2017, 61(1) Luis Ángel Martínez-Martínez et al.

multiplication used during the construction of the αXKL matrix,
for a subroutine which performs the matrix multiplication em-
ploying the NVIDIA cuBLAS library, already implemented in
the Q-Chem code. With this simple modification, we observed
a significant reduction in the elapsed time associated with the
construction of the αXKL matrix, as shown in Figure 6. Results
shown in Figure 6 from this approach were obtained with a Tes-
la M2090 GPU; however, similar results are expected when
using more modern GPUs, specially for large systems where
the speedup achieved is close to the theoretical limit even when
using an old GPU.

To introduce non-blocking communication and with the
aim on concurrent execution of matrix multiplications, we pro-
posed a batching scheme in which batches of K matrices are
initialized and then are processed and multiplied by its trans-
pose within a single call of a function, carrying out these tasks
in different streams for each matrix. The value of K is set dy-
namically according to a threshold value which reflects the on-
board GPU memory constraint. From the results illustrated in
Figure 6, we note that this approach introduces a significant
time improvement, with respect to the blocking version. How-
ever, this improvement seems to be less effective when the

system size increases, as a consequence of the reduction in the
percentage of time invested in communications.

In order to include all these advantages in Q-Chem, a series
of subroutines were implemented within the code responsi-
ble of the computation of the SOS-MP2 energies. These sub-
routines accomplish the streams setup, the matrix multiplication
using CUBLAS in a concurrent and batched fashion, and the
shutting down of the mentioned streams. Furthermore, to take
into account the possibility to process big matrices that do not
fit the GPU on-board memory, we employed the matrix multi-
plication library developed by Aspuru-Guzik and co-workers
[2] which has the capability to chop big matrices and process
the matrix multiplication by pieces. The modified algorithm is
described in more detail in Figure 7. The speedups achieved
with the implementation of these subroutines are shown in Fig-
ure 8. To avoid possible fluctuations in the speedups data due to
changes in processing time of the different stages of the calcu-
lations, we considered that the only variable in the calculation
wall-time was the time spent on step 5, between the GPU and
CPU version. This was done since we noticed that the speedup
calculations based on the GPU and CPU raw data gave rise to
spurious speedups above the maximum theoretical speedup for
the biggest systems.

We tested also for the numerical precision of results ob-
tained on a GPU as coprocessor as they compare to results run
on a CPU. As expected for double-precision calculations on
both CPU and GPU, results are equal, except for one alkane
whose correlation energy is within a margin of less than 0.1
kcal/mol. Since there was only one case of slight discrepancy
between GPU and CPU results, we believe that the error source
is not algorithmic but due to an error in data processing.

Figure 6. (a)Timing comparison between blocking and non-blocking
versions, developed in this work, for the construction of αXKL coeffi-
cients in the SOS-MP2 algorithm. The systems employed were linear
alkanes and the cc-pVDZ/rimp2-cc-pVDZ basis set. (b) Speedup com-
parison between the blocking and the non-blocking versions, consider-
ing the construction of αXKL coefficients only. These results were
obtained using a NVIDIA Tesla M2090 GPU.

Figure 7. Pseudocode showing the main steps of the proposed algo-
rithm to build the X matrix in SOS-MP2 calculations. As in Figure 1,
Q denotes the number of points in the quadrature for the evaluation of
Eq. 7.

GPU Algorithm for the Scaled Opposite-Spin (SOS) MP2 Energy Evaluation 65

4. Discussion

We have found that the concurrent capacity supported by the
majority of GPUs introduces an important enhancement in
the execution of the most demanding step of the SOS-MP2 al-
gorithm. On the other hand, given that the speedup in this algo-
rithm has an upper bound of 5.6, the increase in performance
compared with the blocking version of the code seems small
(see Figure 6), yet it is noteworthy that the speedup achieved
constitutes approximately 87% of that maximum value.

On the other hand, it should be mentioned that the main
drawback of this method is that pinned memory is a scarce re-
source which means that an excessive use of this kind of mem-
ory can reduce the overall system performance, that limits its
use in very big systems. Unfortunately it is difficult to know
how much page-locked memory allocation can interfere with
performance, given that it depends on the operative system and
other OS applications that compete for resources. However, we
think that this problem can be ameliorated with the use of ap-
propriate queue systems that limit the amount of resources allo-
catable by users, which is the case in modern clusters oriented
to HPC.

5. Conclusions

In this paper we have evaluated the most computationally in-
tensive part of the SOS-MP2 algorithm for the calculation of
the correlation energy with particular application to its execu-
tion within the Q-Chem suite. We built on the asynchronous
CPU-GPU communication capability of modern GPUs to in-
crease bandwidth and performance. These capabilities were
tested on the calculation of a set of linear alkanes from 10 to 80

carbon atoms, where we were able to find an almost three-fold
increase in the speed of the computation of the correlation ener-
gy. While these results are slightly different depending on the
particular GPU employed, considerable speedups are present in
all cases. As implementation of the proposed code is simple,
use of mixed GPU-CPU schemes like the present one are rec-
ommended.

Acknowledgments

The authors are very thankful to DGTIC and Prof. Jorge Martin
del Campo Ramirez for the computational resources provided
and computing time and to Yihan Shao for critical reading of
the manuscript. L.A.M.M. thanks CONACyT for a master’s
scholarship (No. 293319) and for the project No. 129343.

References

1. Jung, Y.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon M., J. Chem.
Phys. 2004, 121, 9793-9802.

2. Olivares-Amaya, R.; Watson, M. A.; Edgar, R. G.; Vogt, L.; Shao,
Y.; Aspuru-Guzik, A., J. Chem. Theory Comput. 2010, 6, 135-144.

3. Leang, S. S.; Rendell, A. P.; Gordon, M. S., J. Chem. Theory Com-
put. 2014, 10, 908-912.

4. Götz, A. W.; Wölfle, T.; Walker, R. C., Annu. Rep. Comput. Chem.
2010, 6, 21-35.

5. http://docs.nvidia.com/cuda/cuda-c-programming-guide, NVID-
IA CORPORATION, CUDA C Programming Guide, accessed in
March, 2017.

6. http://docs.nvidia.com/cuda/cufft, cuFFT CUDA Toolkit Docu-
mentation, accessed in March, 2017.

7. http://docs.nvidia.com/cuda/cublas, cuBLAS: CUDA Toolkit
Documentation, accessed in March, 2017.

8. Stone, J. E.; Phillips, J. C.; Freddolino, P. L.; Hardy, D. J.; Trabu-
co, L. G.; Schulten, K., J. Comput. Chem., 2007, 28, 2618-2640.

9. Rovigatti, L.; Sulc, P.; Reguly, I. Z.; Romano, F., J. Comput.
Chem., 2015, 36, 1-8.

10. Portegies Zwart, S. F.; Belleman, R. G.; Geldof, P. M., New As-
tron. 2007, 12, 641-650.

11. Asadchev, A.; Gordon, M. S., J. Chem. Theory Comput., 2012, 8,
4166-4176.

12. Ufimtsev, I. S.; Martinez, T. J., J. Chem. Theory Comput., 2009, 5,
1004-1015.

13. Ufimtsev, I. S.; Martinez, T. J., J. Chem. Theory Comput., 2008, 4,
222-231.

14. Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. S.;
Windus, T. L., J. Chem. Theory Comput., 2010, 6, 696-704.

15. Yasuda, K., J. Chem. Theory Comput., 2008, 4, 1230-1236.
16. Ufimtsev, I. S.; Martinez, T. J., J. Chem. Theory Comput., 2009, 5,

2619-2628.
17. Liu, F.; Luehr, N.; Kulik, H. J.; Martínez, T. J., J. Chem. Theory

Comput., 2015, 11, 3131-3144.
18. Vogt, L.; Olivares-Amaya, R.; Kermes, S.; Shao, Y.; Ama-

dor-Bedolla, C.; Aspuru-Guzik, A., J. Phys. Chem. A, 2008, 112,
2049-2057.

19. DePrince III, A. E.; Hammond, J. R., J. Chem. Theory Comput.,
2011, 7 1287-1295.

Figure 8. Speedups achieved in the calculation of the correlation ener-
gy of SOS-MP2 algorithm after the implementation of the asynchro-
nous CUDA approach described in the main text. The basis set
employed is cc-pVDZ.

66 J. Mex. Chem. Soc. 2017, 61(1) Luis Ángel Martínez-Martínez et al.

20. Ma, W.; S. Krishnamoorthy, S.; Villa, O.; Kowalski, K., J. Chem.
Theory Comput., 2011, 7, 1316-1327.

21. Asadchev, A.; Gordon, M. S., J. Chem. Theory Comput., 2013, 9,
3385-3392.

22. Anderson, A.; Goddard III, W.; Schroder, P., Comput. Phys. Com-
mun., 2007, 177, 298-306.

23. Gordon, M. S.; Schmidt, M. W., in: Theory and Applications of
Computational Chemistry: the first forty years, Dykstra, C. E.;
Frenking, G.; Kim, K. S.; Scuseria, G. E., Eds., Elsevier, Amster-
dam, 2005, 1167-1189.

24. Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.; Straatsma,
T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Win-
dus, T. L.; De Jong, W. A., Comput. Phys. Commun., 2010, 181,
1477-1489.

25. http://www.petachem.com, PetaChem, accessed in March, 2017
26. Shao Y.; Gan Z.; Epifanovsky E.; Gilbert A.; Wormit M.; Kuss-

mann J.; Lange A.; Behn A.; Deng J.; Feng X.; Ghosh D.; Gold-
ey M.; Horn P.; Jacobson L.; Kaliman I.; Khaliullin R.; Kuś T.;
Landau A.; Liu J.; Proynov E.; Rhee Y.; Richard R.; Rohrdanz
M.; Steele R.; Sundstrom E.; Woodcock H.; Zimmerman P.;
Zuev D.; Albrecht B.; Alguire E.; Austin B.; Beran G.; Bernard
Y.; Berquist E.; Brandhorst K.; Bravaya K.; Brown S.; Casanova
D.; Chang C.; Chen Y.; Chien S.; Closser K.; Crittenden D.; Die-
denhofen M.; DiStasio R.; Do H.; Dutoi A.; Edgar R.; Fatehi S.;
Fusti-Molnar L.; Ghysels A.; Golubeva-Zadorozhnaya A.; Gomes

J.; Hanson-Heine M.; Harbach P.; Hauser A.; Hohenstein E.;
Holden Z.; Jagau T.; Ji H.; Kaduk B.; Khistyaev K.; Kim J.; Kim
J.; King R.; Klunzinger P.; Kosenkov D.; Kowalczyk T.; Krauter
C.; Lao K.; Laurent A.; Lawler K.; Levchenko S.; Lin C.; Liu F.;
Livshits E.; Lochan R.; Luenser A.; Manohar P.; Manzer S.; Mao
S.; Mardirossian N.; Marenich A.; Maurer S.; Mayhall N.; Neus-
camman E.; Oana C.; Olivares-Amaya R.; O’Neill D.; Parkhill J.;
Perrine T.; Peverati R.; Prociuk A.; Rehn D.; Rosta E.; Russ N.;
Sharada S.; Sharma S.; Small D.; Sodt A.; Stein T.; Stück D.; Su
Y.; Thom A.; Tsuchimochi T.; Vanovschi V.; Vogt L.; Vydrov O.;
Wang T.; Watson M.; Wenzel J.; White A.; Williams C.; Yang J.;
Yeganeh S.; Yost S.; You Z.; Zhang I.; Zhang X.; Zhao Y.; Brooks
B.; Chan G.; Chipman D.; Cramer C.; Goddard W.; Gordon M.;
Hehre W.; Klamt A.; Schaefer H.; Schmidt M.; Sherrill C.; Truhlar
D.; Warshel A.; Xu X.; Aspuru-Guzik A.; Baer R.; Bell A.; Besley
N.; Chai J.; Dreuw A.; Dunietz B.; Furlani T.; Gwaltney S.; Hsu
C.; Jung Y.; Kong J.; Lambrecht D.; Liang W.; Ochsenfeld C.;
Rassolov V.; Slipchenko L.; Subotnik J.; Van Voorhis T.; Herbert
J.; Krylov A.; Gill P.; Head-Gordon M., Mol. Phys., 2014, 113,
184-215.

27. Maurer, S. A.; Kussman, J.; Ochsenfeld, C., J. Chem. Phys. 2014,
141, 051106.

28. Betkaoui, B.; Thomas, D. B.; Luk, W., in: Proc.-2010 Int. Conf.
Field-Programmable Technol. FPT’10, 2010, 94-101.

