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Abstract. The most computationally intensive part of the SOS-MP2 
algorithm for the calculation of the correlation energy [1], as executed 
in Q-Chem, is implemented for use in a graphical processing unit 
(GPU). Our approach adds new routines to the library initially devel-
oped by Aspuru-Guzik and co-workers [2], aiming at maximization of 
bandwidth and performance, by taking advantage of the asynchronous 
CPU-GPU communication capability of modern GPUs. These changes 
permit an almost six-fold acceleration in the correlation energy calcu-
lation of linear alkanes. This was achieved employing a NVIDIA Tesla 
K40C (Kepler) GPU and the Compute Unified Device Architecture 
(CUDA).
Keywords: GPUs; SOS-MP2; correlation energy; Q-Chem.

Resumen. La parte computacional más intensiva del algoritmo SOS-
MP2 para el cálculo de la energía de correlación [1], como se lleva a 
cabo en Q-Chem, es implementada para su uso en unidades de proceso 
gráfico (GPU). Nuestro método agrega nuevas rutinas a la biblioteca 
inicialmente desarrollada por Aspuru-Guzik y colaboradores [2], con 
la intención de maximizar el ancho de banda y la eficacia al aprove-
char la comunicación asíncrona GPU-CPU presente en GPUs moder-
nos. Estos cambios permiten una aceleración por un factor de casi seis 
en el cálculo de la energía de correlación de alcanos lineales. Los re-
sultados se obtuvieron al emplear un GPU NVIDIA Tesla K40C (Ke-
pler) y la Arquitectura de Dispositivo de Cómputo Unificado (CUDA).
Palabras Clave: GPUs; SOS-MP2; energía de correlación; Q-Chem.

1. Introduction

The use of accelerators to improve scientific computing perfor-
mance is not exclusive of recent years. Their early application 
in scientific code can be traced back to the beginning of the 
1980s, when a floating point accelerator was implemented in 
computers [3]. Recently, Graphic Processing Units (GPUs) 
have attracted a lot of attention, as can be seen in their extensive 
use in the high performance computing field.

Early use of GPUs was precluded by their inherent pro-
gramming complexity, which relied on either OpenGL or Di-
rectX graphic programming languages. This issue limited 
general purpose computation on GPUs and circumventing this 
limitation was the motivation for additional efforts [4]. Howev-
er, the release of NVIDIA’s compute unified device architecture 
(CUDA [5]) provided a high level abstraction model through 
the incorporation of relatively simple extensions of the standard 
C language, which permitted the development of libraries that 
are useful for common problems in quantum chemistry and sol-
id state physics, such as Fourier transforms (CUFFT [6]) and 
linear algebra (cuBLAS [7]).

The success of this model is evident: since the CUDA re-
lease, a variety of codes have been developed for molecular 
dynamics applications [8, 9], astrophysics simulations [10] and 
electronic structure methods. Within the last mentioned appli-
cations, special efforts have been made concerning the GPU 
implementation of Hartree-Fock (HF) [11, 12], evaluation of 
electron repulsion integrals [13, 14], density functional theory 

[15], geometry optimization [16], solvation models [17], reso-
lution of the identity MP2 (RI-MP2) [2, 18], coupled-cluster 
theory (CC) [19, 20, 21] and quantum Monte-Carlo [22]. In 
addition, popular electronic structure codes have adopted hy-
brid CPU/GPU schemes in order to speedup calculations, for 
instance GAMESS [23], NWChem [24], TeraChem [25] and 
Q-Chem [26].

Our work constitutes an additional effort to extend the 
scope of GPU applications in electronic structure methods. We 
are interested in the GPU implementation of the so-called 
scaled opposite-spin second order Møller-Plesset theory (SOS-
MP2). This is a simplified and economical treatment of elec-
tronic correlation energy calculations [1]. In this approach, only 
the α-β component of MP2 energy is calculated and scaled by 
an empirical factor (which turns out to be 1.3), which yields 
statistically improved energies and derivative properties over 
the conventional MP2 method. In addition, the introduction of 
the Resolution of the Identity (RI) approximation, and a La-
place transform results in an improved method without any 
fifth order computational steps, in contrast with the original 
MP2 formulation.

A similar effort has been carried out recently by the intro-
duction of a new SOS-MP2 algorithm by Maurer et al. [27] in 
which they reduce the scaling by modifying the rate determin-
ing step in such a way that it is efficiently evaluated in a GPU 
without using any GPU-based linear algebra library. However, 
we believe that our present work is still relevant as it comple-
ments the one initiated by Aspuru-Guzik and co-workers [2], 
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by adding the non-blocking feature to the set of routines that 
constitutes the library in development. This has the advantage 
of reducing the programming effort in the addition of new ma-
trix-multiplications related algorithms, at which the program-
mer could simply call a single function that automatically 
carries out the whole process of the non-blocking calculation.

In this work, the main details concerning the GPU im-
plementation of the most computational intensive part of the 
SOS-MP2 algorithm of Q-Chem, are exposed. This article is 
organized as follows: in the Theory and Implementation sec-
tion, the theoretical basis of the SOS-MP2 algorithm are pre-
sented and the details of the implementation process and the 
use of asynchronous calls in CUDA as an option to improve 
performance are described. In the Results section, the most im-
portant results concerning the process of benchmarking are dis-
cussed. In the Discussion section we comment on the speedups 
observed by the use of this GPU implementation. Finally in the 
Conclusions section we summarize our results.

2. Theory and Implementation

2.1. SOS-MP2 method

The theoretical basis of the SOS-MP2 method was reported by 
Head-Gordon and co-workers [1]. In this method, the energy is 
expressed as a series of matrix multiplications (within a dis-
crete quadrature that involves Q points), according to:

∑∑∑∑ ∑∑= − = −
α β

α β
2E B B B B X XMP

OS

q

Q

ia jb KL
ia
K

jb
K

ia
L

jb
L

q

Q

KL
KL KL  (1)

Here, the major computational task consists in the con-
struction of the X matrix (or matrices, if open shell), which is 
defined in terms of three-center bielectronic integrals:
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In Eq. 2, Bia
K  results from the RI approximation for the 

evaluation of four-center integrals, and the scaled orbitals for 
each quadrature point are given by
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Here, ∆ jb
ia = εa + εb − ε i − ε j, and ε ε ε ε( ),  ,  i j a b  are the en-

ergies, in the canonical basis, of occupied (virtual) orbitals.
In Q-Chem, for each quadrature point q, the X matrix (or 

matrices, if open shell) is constructed through the evaluation of 
Eq. 1. This step is fourth order in molecular size.

In actual Q-Chem SOS-MP2 calculations, the algorithm is 
timed in the six main steps that are illustrated in Figure 1, 
namely 1) construction and inversion of the (P | Q) matrix, 
2) construction of the (ia | P) matrix, 3) construction of Bia

Q , 
4) scaling of the Bia

Q  coefficients, 5) construction of the X ma-
trices and 6) increment of energy.

It is worth noting that the SOS-MP2 method preserves the 
size-consistency property given that the OS component of the 
MP2 energy conserves it, even though, it is possible that due to 
its approximate nature the size-consistency property might 
brake down in unexpected situations. Some physical deficien-
cies are known: firstly, it underestimates the correlation energy 
in the limit of long separation, due to the fact that the OS com-
ponents and the same-spin (SS) ones are equal in this limit; and, 

Figure 1. Pseudocode showing the main steps in the SOS-MP2 energy 
evaluation algorithm in Q-Chem. In this scheme Q denotes the number 
of points in the numerical quadrature introduced in Equation 7. In ac-
tual calculations, Q = 7.
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secondly, it can overestimate the correlation energy in systems 
where the SS component is small [1].

2.2. Implementation

During the development of GPU applications, memory optimi-
zations are fundamental to increase performance, thus a second 
goal is to maximize bandwidth in data transfer. This is com-
monly done through minimizing CPU-GPU communication, 
which can be achieved by batching many small transfers into a 
larger one or enhancing the bandwidth between the host and the 
device by taking advantage of the non-blocking data transfers 
capabilities available in modern GPUs [5]. The second option is 
realized using page-locked (or pinned) memory together with 
the so-called streams, which are sequences of commands (pos-
sibly issued by different host threads) that are executed in the 
order issued. In contrast with common blocking data transfers, 
the non-blocking version allows the programmer to issue sever-
al memory copies and kernel executions in different streams at 
a time, so that the operations can be interleaved and overlapped, 
which translates into a greater occupancy of the device memory 
(See Fig. 2).

Data parallelism (which focuses on distributing the data 
across different parallel computing nodes) is common in high 
performance computing (HPC) oriented to scientific applica-
tions, an example of this model is the parallel programming 
“Single Instruction Multiple Data” of CUDA. Since the on-
board memory of GPUs is a finite resource and the amount of 
data to be processed in HPC fairly exceeds this limit, it is usual 
to process chunks of the whole data set by the GPU in the most 
demanding tasks. However, the disadvantage of this scheme is 
that the number of data transfers that have to be issued is high 

for large data sets. Although in this case the communication 
host-device overhead can be reduced, when the algorithm al-
lows it, by reducing data transfers (which can be done by batch-
ing several chunks into a larger one and executing the kernel 
sequentially over segments of the buffer). Nevertheless, in the 
GPU implementation presented here, we adopted a non-block-
ing model primarily because it permits to hide memory copy 
more effectively by overlapping CPU-GPU communication 
(and viceversa, i. e. GPU-CPU) with kernel execution. Addi-
tionally, the bandwidth is enhanced by using pinned memory, 
and different sets of data can be processed simultaneously when 
the device has this capability.

In order to show that the most demanding step of the SOS-
MP2 algorithm corresponds to the one associated with Eq. 1, 
we carried out a benchmark to analyze the execution times of 
different steps involved in the SOS-MP2 algorithm, consider-
ing linear alkanes and employing the cc-pVDZ/rimp2-cc-pVDZ 
basis set. The results are summarized in Figure 3.

From these results, it is noted that the wall-time of the en-
ergy evaluation is dominated by the fifth step of the algorithm, 
which correspond to the calculation of the αXKL  coefficients. 
Since it has been shown that this is the most expensive step in 
the algorithm, we investigated the possibility of achieving a 
speedup based on the use of Graphical Processing Units by 
working exclusively on this step.

Firstly, and in order to set goals regarding the speedup that 
can be achieved parallelizing the section of the code corre-
sponding to the fifth step, we analyzed the trend in the percent-
age of the total wall-time SOS-MP2 energy evaluation spent in 
that section as the system size increases. This trend is illustrated 
in Figure 4.

Figure 2. Schematic timeline of asynchronous data transfer in the 
non-blocking developed version. This approach enables the program-
mer to overlap communication with computation time by issuing data 
transfers and kernel executions in different streams (streams are repre-
sented with the same color).

Figure 3. Comparison of the wall-time required by the algorithm steps 
of the SOS-MP2 energy evaluation, for linear hydrocarbons. The Dun-
ning cc-pVDZ basis and the rimp2-cc-pVDZ auxiliary basis set were 
used. Only the stages that account for the major percentages of total 
wall-time are shown: construction of three-center integrals (ia|P), con-
struction of Bia

Q  coefficients, and construction of αXKL coefficients.
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From these results, we noted that at most, step 5 represents 
approximately 82% of elapsed time, and the trend observed 
seems to prevail for bigger systems. Considering this propor-
tion as parallelizable, and assuming that the 18% of elapsed 
time left is sequential, we can set the expected upper-bound 
speedup by employing Amdahl’s law [5]

( )
=

− +

1

1
S

P P
N
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Where P is the fraction of the total serial execution time 
taken by the portion of code that can be parallelized and N is the 
number of processors where the parallel portion of the code 
runs. By using Eq. 8, we find that the maximum speedup that 
can be achieved assuming strong scaling is 5.6.

Equation 1 corresponds to the fifth step of the algorithm. In 
Q-Chem this is evaluated within a loop over active occupied 
molecular orbitals. If N is the number of auxiliary orbitals and 
v the number of active virtual orbitals, first a matrix of size 
v × N is read from a temporal file and it is multiplied by its 
transpose afterwards. Then, this result is augmented into a 
N × N matrix X. In order to use the GPU more effectively, we 
implemented a batch scheme to group K matrices together in 
such a way that each matrix is processed by an independent 
stream.

3. Results

The most intensive part of the algorithm, as shown above, cor-
responds to matrix multiplications. In order to assess the perfor-
mance of this operation with two different CUDA approaches 
(namely non-blocking and blocking communication versions), 

we developed two different code toy models. Both models pro-
cess 100 random matrices, multiplying each of them by its 
transpose and augmenting the result into a final matrix. The 
difference between them resides in that one uses asynchronous 
communication (non-blocking version) and the other uses the 
common communication routines (blocking version). These 
test codes were written with CUDA version 6.0 (CUDA driver 
version 6.0) and were compared with the performance achieved 
by the Intel® MKL library (Fig. 5). The calculations were car-
ried out on Intel Xeon® processors at 2.40 GHz, on a node with 
the Red Hat Enterprise Linux OS, release 6.5. In the GPU cal-
culations, a Tesla K40C GPU was employed. From the results 
obtained (Fig. 5), it is worth noting that the reduction in perfor-
mance due to PCI bus latency is minimal in the case of small 
matrices, when the non-blocking communication approach is 
employed (as a result of the computing-communication over-
lap), and the maximum observed speedup with respect to CPU 
timings is approximately 6 % greater that the maximum speed-
up using blocking communication.

It is worth mentioning that the performance achieved using 
the MPI model is approximately the same as that achieved 
when six CPUs are used in conjunction with the use of a GPU 
as a coprocessor. However, as previous work shows [28], one of 
the advantages of GPU computing over a multicore approach, 
is the low energy amount per floating point operation in numer-
ical computations that involve BLAS level 3 operations (ma-
trix-matrix operations). Although a mixed MPI-CUDA scheme 
can be proposed to take advantage of modern clusters with sev-
eral GPUs and CPU cores, we preferred to employ the CUDA 
scheme in the current study, given the availability of a matrix 
multiplication library in the Q-Chem code, and considering that 
the new functions can be easily incorporated in a future MPI 
implementation.

For comparison and exploration purposes, the first ap-
proach used to introduce acceleration in the calculations was a 
simple substitution of the subroutine that carries out the matrix 

Figure 4. Percentage of total wall-time required by the SOS-MP2 en-
ergy evaluation algorithm in the construction of αXKL  coefficients in 
the original Q-Chem code. The systems employed here were linear 
alkanes of variable chain length, and the basis sets was ccpVDZ/
rimp2-cc-pVDZ.

Figure 5. Performance comparison between the two developed CUDA 
versions for data processing. Speedup=CPU elapsed time/GPU elapsed 
time.
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multiplication used during the construction of the αXKL  matrix, 
for a subroutine which performs the matrix multiplication em-
ploying the NVIDIA cuBLAS library, already implemented in 
the Q-Chem code. With this simple modification, we observed 
a significant reduction in the elapsed time associated with the 
construction of the αXKL matrix, as shown in Figure 6. Results 
shown in Figure 6 from this approach were obtained with a Tes-
la M2090 GPU; however, similar results are expected when 
using more modern GPUs, specially for large systems where 
the speedup achieved is close to the theoretical limit even when 
using an old GPU. 

To introduce non-blocking communication and with the 
aim on concurrent execution of matrix multiplications, we pro-
posed a batching scheme in which batches of K matrices are 
initialized and then are processed and multiplied by its trans-
pose within a single call of a function, carrying out these tasks 
in different streams for each matrix. The value of K is set dy-
namically according to a threshold value which reflects the on-
board GPU memory constraint. From the results illustrated in 
Figure 6, we note that this approach introduces a significant 
time improvement, with respect to the blocking version. How-
ever, this improvement seems to be less effective when the 

system size increases, as a consequence of the reduction in the 
percentage of time invested in communications. 

In order to include all these advantages in Q-Chem, a series 
of subroutines were implemented within the code responsi-
ble of the computation of the SOS-MP2 energies. These sub-
routines accomplish the streams setup, the matrix multiplication 
using CUBLAS in a concurrent and batched fashion, and the 
shutting down of the mentioned streams. Furthermore, to take 
into account the possibility to process big matrices that do not 
fit the GPU on-board memory, we employed the matrix multi-
plication library developed by Aspuru-Guzik and co-workers 
[2] which has the capability to chop big matrices and process 
the matrix multiplication by pieces. The modified algorithm is 
described in more detail in Figure 7. The speedups achieved 
with the implementation of these subroutines are shown in Fig-
ure 8. To avoid possible fluctuations in the speedups data due to 
changes in processing time of the different stages of the calcu-
lations, we considered that the only variable in the calculation 
wall-time was the time spent on step 5, between the GPU and 
CPU version. This was done since we noticed that the speedup 
calculations based on the GPU and CPU raw data gave rise to 
spurious speedups above the maximum theoretical speedup for 
the biggest systems.

We tested also for the numerical precision of results ob-
tained on a GPU as coprocessor as they compare to results run 
on a CPU. As expected for double-precision calculations on 
both CPU and GPU, results are equal, except for one alkane 
whose correlation energy is within a margin of less than 0.1 
kcal/mol. Since there was only one case of slight discrepancy 
between GPU and CPU results, we believe that the error source 
is not algorithmic but due to an error in data processing. 

Figure 6. (a)Timing comparison between blocking and non-blocking 
versions, developed in this work, for the construction of αXKL  coeffi-
cients in the SOS-MP2 algorithm. The systems employed were linear 
alkanes and the cc-pVDZ/rimp2-cc-pVDZ basis set. (b) Speedup com-
parison between the blocking and the non-blocking versions, consider-
ing the construction of αXKL coefficients only. These results were 
obtained using a NVIDIA Tesla M2090 GPU.

Figure 7. Pseudocode showing the main steps of the proposed algo-
rithm to build the X matrix in SOS-MP2 calculations. As in Figure 1, 
Q denotes the number of points in the quadrature for the evaluation of 
Eq. 7.
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4. Discussion 

We have found that the concurrent capacity supported by the 
majority of GPUs introduces an important enhancement in 
the execution of the most demanding step of the SOS-MP2 al-
gorithm. On the other hand, given that the speedup in this algo-
rithm has an upper bound of 5.6, the increase in performance 
compared with the blocking version of the code seems small 
(see Figure 6), yet it is noteworthy that the speedup achieved 
constitutes approximately 87% of that maximum value. 

On the other hand, it should be mentioned that the main 
drawback of this method is that pinned memory is a scarce re-
source which means that an excessive use of this kind of mem-
ory can reduce the overall system performance, that limits its 
use in very big systems. Unfortunately it is difficult to know 
how much page-locked memory allocation can interfere with 
performance, given that it depends on the operative system and 
other OS applications that compete for resources. However, we 
think that this problem can be ameliorated with the use of ap-
propriate queue systems that limit the amount of resources allo-
catable by users, which is the case in modern clusters oriented 
to HPC. 

5. Conclusions 

In this paper we have evaluated the most computationally in-
tensive part of the SOS-MP2 algorithm for the calculation of 
the correlation energy with particular application to its execu-
tion within the Q-Chem suite. We built on the asynchronous 
CPU-GPU communication capability of modern GPUs to in-
crease bandwidth and performance. These capabilities were 
tested on the calculation of a set of linear alkanes from 10 to 80 

carbon atoms, where we were able to find an almost three-fold 
increase in the speed of the computation of the correlation ener-
gy. While these results are slightly different depending on the 
particular GPU employed, considerable speedups are present in 
all cases. As implementation of the proposed code is simple, 
use of mixed GPU-CPU schemes like the present one are rec-
ommended. 
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