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Abstract. Quantum Information Theory is a new field with potential 
implications for the conceptual foundations of Quantum Mechanics 
through density matrices. In particular, information entropies in 
Hilbert space representation are highly advantageous in contrast 
with the ones in phase space representation since they can be eas-
ily calculated for large systems. In this work, novel von Neumann 
conditional, mutual, and joint entropies are employed to analyze the 
dissociation process of small molecules, Cl2 and HCl, by using the 
spectral decomposition of the first reduced density matrix in natural 
atomic orbital-based representation which allows us to assure rota-
tional invariance, N- and v-representability in the Atoms-in-Molecules 
(AIM) scheme. Quantum information entropies permit to analyze the 
dissociation process through quantum mechanics concepts such as 
electron correlation and entanglement, showing interesting critical 
points which are not present in the energy profile, such as charge 
depletion and accumulation, along with bond breaking regions.
Key words: Quantum Information Theory, entanglement, diatomic 
molecules, Ab initio calculations

Resumen. La Teoría de Información Cuántica es un nueva área de 
investigación con implicaciones potenciales para el desarrollo con-
ceptual de los fundamentos de la Mecánica Cuántica mediante las 
matrices de densidad. En particular, las entropías de información en 
la representación del espacio de Hilbert ofrecen amplias ventajas en 
comparación con las que se definen en la representación del espacio 
real debido a que pueden ser fácilmente aplicadas en grandes siste-
mas. En este estudio, se emplean nuevas entropías de von Neumann 
de tipo condicional, mutuas y conjuntas para analizar el proceso de 
disociación de moléculas pequeñas, Cl2 y HCl, usando la descom-
posición espectral de la matriz densidad reducida de primer orden 
en una representación natural atómica que permite asegurar su inva-
riancia rotacional, y su N- y v-representabilidad en un esquema AIM. 
Las entropías informacionales cuánticas permiten analizar el proceso 
de disociación mediante conceptos mecánico-cuánticos tales como 
correlación electrónica y entrelazado, mostrando puntos críticos de 
interés que no se encuentran en el perfil energético, tales como remo-
ción y acumulación de carga, así como puntos de formación y ruptura 
de enlace.
Palabras clave: Teoría de información cuántica, entrelazado, molé-
culas diatómicas, cálculos ab initio.

Introduction

The most interesting technological implications of quantum 
mechanics are based on the notion of entanglement, which is 
the essential ingredient for both quantum cryptography, quan-
tum computing, and quantum teleportation [1]. While quantum 
cryptography makes use of photons for transmitting messages, 
most feasible studies of quantum computers rely on quantum 
dots (clusters) or molecules and therefore already enter the 
realm of theoretical chemistry, and though the first experi-
ments regarding quantum teleportation have been performed 
using photons [2-6], teleportation with the massive particles 
chemists deal with is, of course, of much higher interest, up 
to now it remains an open question whether entanglement can 
be realized with molecules or not [7]. Therefore, it is evident 
that the new quantum techniques enter the sphere of interest 
of chemistry, and in consequence theoretical chemistry has to 
concern itself with entanglement as well. Generally speaking, 
if two particles are in an entangled state, then even if the par-
ticles are physically separated by a great distance, they behave 
in some respect as a single entity rather than as two separate 
entities. Entanglement shows up in cases where a former unit 
dissociates into simpler sub-systems. Corresponding processes 
are known quite well in chemistry. The real-space partitioning 
of a molecule into subsystems is still a challenging problem 

in theoretical chemistry [8-20], because during this process 
a certain entanglement of the subsystems emerges, and it is 
very difficult to get rid of it without destroying elementary 
correlations between the subsystems. So, apart from its evi-
dent importance for the foundations of physics, entanglement 
plays a role in chemistry too. Although information entropies 
have been used for a variety of studies in quantum chemistry 
[21-27], applications of entanglement measures in chemi-
cal systems are very scarce. Recently, Jaynes and Shannon 
entropies in a two-electron entangled artificial atom have been 
studied in the context of correlation energy [28] and the von 
Neumann entropy was recently used as an alternative measure 
of the electron correlation to measure the entanglement for He 
atom and H2 molecule [29, 30]. Very recently, marginal and 
non-marginal information measures in Hilbert space have been 
proposed [31], and applied to small chemical systems, show-
ing than entanglement can be realized in molecules [32].

It is of great interest in Chemistry to understand molecular 
systems as combination of atoms and molecular fragments. 
Thus, the concept of AIM has been the focus of great deal of 
attention [8-20]. Chemical processes involve small changes 
between atoms and molecular subsystems and it is crucial to 
understand the interactions (correlation and entanglement) 
involved in such chemical changes. The main goal of the 
present study is to show that marginal entropies of bipartite 
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composite systems in Hilbert space [31] are able to reveal 
all critical points expected in the density profile of the dis-
sociation processes of small chemical systems, most of them 
not present in the energy profile, such as accumulation and 
depletion of charge and bond breaking. This is achieved by use 
of novel measures of conditional, mutual, joint information 
von Neumann entropies computed by means of the spectral 
decomposition of the first reduced density matrix in the natural 
atomic orbital-based representation, assuring rotational invari-
ance, and N and v-representability in the AIM scheme [33]. 
The Laplacian (LAP) and the Molecular Electrostatic Potential 
(MEP) are also calculated in order to reveal the structure of the 
densities.

Preliminaries

In this section we present important concepts of QIT along 
with the natural atomic probabilities employed for the calcula-
tion of the entropies. Besides, definitions of the marginal von 
Neumann entropies used in this work are presented,

Entanglement and von Neumann Entropies

The uncertainty in a collection of possible observables Ai with 
corresponding probability distribution pi(A) is given by its 
Shannon entropy H(A) [34]
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This measure is suitable for systems described by classical 
physics, and is useful to measure uncertainty of observables 
but it is not suitable for measuring uncertainty of the gen-
eral state of a quantum system. It is the von Neumann entropy 
which is appropriate to measure uncertainty of quantum sys-
tems since it depends on the density matrix (see below).

Suppose that we have two sets of discrete events Ai and 
Bj with the corresponding probability distributions, pi(A) and 
pj(B). The relative entropy between these two distributions is 
defined as
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This function, also known as Kullback-Liebler entropy 
[35, 36] is a measure of the ‘‘distance’’ between pi(A) and 
pj(B), even though, strictly speaking, it is not a mathematical 
metric since it fails to be symmetric:

 ( ) ( )H A B H B A . (3)

Another important concept derived from relative entropy 
concerns the gathering of information. When one system 
learns something about another, their states become correlated. 
How correlated they are, or how much information they have 

about each other, can be quantified by the mutual information. 
The Shannon mutual information between two random vari-
ables A and B, having a joint probability distribution pij(A,B) 
and marginal probability distributions
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Where H(A,B) is the joint entropy defined as
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which measures the uncertainty about the whole system AB.
The mutual information H(A:B) can be written in terms 

of the Shannon relative entropy. In this sense it represents a 
distance between the distribution p(A,B) and the product of the 
marginals p(A) × p(B) As such, it is intuitively clear that this is 
a good measure of correlations, since it shows how far a joint 
distribution is from the product one in which all the correla-
tions have been removed, or alternatively, how distinguishable 
a correlated state is from a completely uncorrelated one. So we 
have

 : ( ) ( ) ( )H A B H p AB p A p B . (7)

Suppose that we wish to know the probability of observ-
ing bj if ai has been observed. This is called a conditional 
probability and is given by
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Hence the conditional entropy is,
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This quantity, being positive, tells us how uncertain we 
are about the value of B once we have learned about the value 
of A. Now the Shannon mutual information can be rewritten as

 : ( ) ( )H A B H A H A B . (10)

And the joint entropy as

 , ( ) ( )H A B H B H A B . (11)
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Hence, the Shannon mutual information, measures the 
quantity of information conveyed about the random vari-
able A(p(B)) through measurements of the random variable 
B(p(A)). Note also that, unlike the Shannon relative entro-
py, the Shannon mutual information is symmetric. Besides, 
according to the properties of the logarithmic functions (Jensen 
inequality) it can be established that entropy is a concave func-
tion, –SpixilnSpixi ≥ –Spixilnxi  meaning that mixing probabil-
ity distributions increases entropy, whereas the relative entropy 
is a convex function,

 
Sxiln(Sxi/Sai) ≤ Sxiln(xi/ai) i.e., mixing 

decreases the distance between states (less distinguishable).
The difference between classical and quantum entropies 

can be seen in the fact that quantum states are described by a 
density matrix r (and not just probability vectors). The den-
sity matrix is a positive semidefinite Hermitian matrix, whose 
trace is unity. An important class of density matrices is the 
idempotent one, i.e., r = r2 . The states these matrices repre-
sent are called pure states. When there is no uncertainty in the 
knowledge of the system its state is then pure. Another impor-
tant concept is that of a composite quantum system, which is 
one that consists of a number of quantum subsystems. When 
those subsystems are entangled it is impossible to ascribe a 
definite state vector to any one of them, unless we deal with 
a bipartite composite system. The most often cited entangled 
system is the Einstein-Podolsky-Rosen state (EPR) [37,38], 
which describes a pair of two photons. The composite system 
is described by 1 2 2 1

1 2
2

( ) ( ) ( ) ( )
( , )  which represents the 

spin directions along the z axis that can either be up or down. 
We can immediately see that neither of the photons possesses 
a definite state vector, then if a measurement is made on one 
photon, let say in the up state, then the other photon will be 
in the down state. This “assignment” cannot be applied to a 
general composite system unless its general state is written in 
a diagonal decomposable form, which not only is mathemati-
cally convenient, but also gives a deeper insight into correla-
tions between the two subsystems. According to quantum 
mechanics the state vector of a composite system, consisting 
of subsystems A and B, is represented by a vector belonging 
to the tensor product of the two Hilbert spaces HA ⊗ HB. The 
general state of this system can be written as a linear superpo-
sition of products of individual states:
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m n
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Where {ξm(A); m = 1 to M} and {Ψn(B); n = 1 to N} are 
the basis of the subsystems A and B, respectively. This state 
can always be decomposed in the Schmidt diagonal form:
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where cl(A) and jl(B) are orthonormal bases for A and B, 
respectively. Note that in this form the correlations between 
the two subsystems are completely revealed. If A is found in 
the state cp(A), for example, then the state of B is in the jp(B) 

state. This is clearly a multistate generalization of the EPR-
state mentioned earlier.

In order to understand the correlation between two subsys-
tems in a joint pure state we point out that the reduced density 
matrices of both subsystems, written in the Schmidt decom-
posed state above, are diagonal and have the same positive 
spectrum. In particular, the overall density matrix is given by

 
( ) ( ) ( ) ( )n m n m n m

nm
A A B B , (14)

whereas the reduced ones are

 

2

( ) ( )

( ) ( )

A n n
n

m m m
m

B B

A A , (15)

and in analogous way
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It is important to note that a N-dimensional subsystem can 
then be entangled with no more than N orthogonal states of 
another one. Schmidt decomposition is, in general, not practi-
cal for more than two entangled subsystems since for say n 
entangled systems is uncertain to know at the same time a gen-
eral state such that by observing the state of one of the subsys-
tems we could instantaneously know the state of the other n-1. 
Clearly, involvement of n-subsystems complicates the analysis 
and produces an even greater mixture and uncertainty. The 
same reasoning applies to mixed states of two or more subsys-
tems (i.e., states whose density operator is not idempotent), for 
which we cannot have the Schmidt decomposition in general.

When two subsystems become entangled, the composite 
state can be expressed as a superposition of the products of 
the corresponding Schmidt basis vectors. From Eq. (13) it fol-
lows that the ith vector of either subsystem has a probability 
of |l|2 associated with it. We are, therefore, uncertain about 
the state of each subsystem, the uncertainty being larger if 
the probabilities are evenly distributed. Since the uncertainty 
in the probability distribution is naturally described by the 
Shannon entropy, this classical measure can also be applied in 
quantum theory. In an entangled system this entropy is related 
to a single observable. The general state of a quantum system, 
is described by its density matrix r. Let the observables ai and 
bj, pertaining to the subsystems A and B, respectively, have a 
discrete and non degenerate spectrum, with probabilities p(ai) 
and p(bj). For simplicity let us define them as pi(A) and pj(B) 
In addition, let the joint probability be pij(A,B). Then
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and similarly for H(B).
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An indication of correlation is that the sum of the uncer-
tainties in the individual subsystems is greater than the uncer-
tainty in the total state. Hence, the Shannon mutual informa-
tion is a good indicator of how much the two given observ-
ables are correlated. However, this quantity, as it is inherently 
classical, describes the correlations between single observables 
only. The quantity that is related to the correlations in the 
overall state as a whole is the von Neumann mutual informa-
tion which depends on the density matrix. The von Neumann 
entropy [39], may be considered as the proper quantum analog 
of the Shannon entropy [40] for a system described by a den-
sity matrix r, and is defined as

 lnS Tr . (18)

The Shannon entropy is equal to the von Neumann entro-
py only when it describes the uncertainties in the values of the 
observables that commute with the density matrix, i.e., if r is a 
mixed state composed of orthogonal quantum states, otherwise

 ( )S H A , (19)

where A is any observable of a system described by r. This 
means that there is more uncertainty in a single observable 
than in the whole of the state [41].

Let rA and rB be the reduced density matrices of sub-
systems A and B, respectively, and let r be the matrix of a 
composite system, then the entropies of two subsystems are 
somewhat analogous to its classical counterpart, but instead of 
referring to observables it is related to the two states which are 
bounded by the following Araki-Lieb [42] inequality

 A B A BS S S S S . (20)

Physically, the left-hand side implies that we have more 
information (less uncertainty) in an entangled state than if the 
two states are treated separately, hence by treating the sub-
systems separately the correlations (entanglement) are being 
neglected. Also, equality in the left-hand side holds when both 
systems are independent for rA, i.e., if the composite system is 
in a pure state, then S(r) = 0, and from the right-hand side it 
follows that S(rA) = S(rB) (Schmidt decomposition Eq. (13)).

As in the classical case, two important relations can be 
established [40], namely, the entropies of independent systems 
add up

 A B A BS S S . (21)

Further, concavity reflects the fact that mixing states 
increases uncertainty, i.e.,

 
( )i i i iS S . (22)

According to the definition of the Shannon mutual infor-
mation which relates only two observables, a quantum analog 
can be defined which measures the correlation between whole 

subsystems. The von Neumann mutual information between 
two subsystems rA and rB of a joint state rAB is defined a

 :A B A B ABS S S S . (23)

As in the case of the Shannon mutual information this 
quantity can be interpreted as a distance between two quantum 
states, the correlated joint state (rAB) and the uncorrelated one 
rA ⊗ rB, which may be represented through a relative entropy

 
:A B AB A BS S . (24)

Hence, the relative quantum entropy is an important quan-
tity to classify and quantify quantum correlations [40, 41]. This 
measure (Eq. 24) possess important properties. It is invariant 
to unitary transformations (the distance between states can not 
be affected under a change in the basis)

 
S S U U U U .

 (25)

Partial tracing over a part of the system produces a loss 
of information and hence the subsystems are more difficult to 
distinguish

 S Tr Tr S . (26)

Therefore, the relative entropy decreases under any com-
bination of these two operations which means that quantum 
distinguishability never increases.

In order to determine the properties of any good measure 
of entanglement we have to establish that a bipartite state is 
“disentangled” if it is in a separable form

 

A B
AB i i i

i
. (27)

These are the most general states that can be created by 
local operations and classical communication, Eqs (25) and 
(26), which contain no quantum correlations as entanglement 
can only be created through global operations [40, 41]. Then 
in order to quantify entanglement is necessary to establish the 
following: (i) For a disentangled state (separable), the measure 
of entanglement should be zero, E(r) = 0, (ii) under any local 
unitary transformations there is only a change of basis, which 
is completely reversible for the given entangled state, and then 
a change of basis should not change the amount of entangle-
ment, i.e.,

 ( ) ( )A B A BE E U U U U . (28)

Finally, local operations, classical communication and 
tracing of an ensemble s which is transformed into subsystems 
si with probabilities pi, can not increase the expected entangle-
ment. i.e.,
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( ) ( )i i

i
E p E . (29)

In summary we can conclude that in order to quantify 
quantum correlations between entangled subsystems, a good 
measure of quantum correlation has to be non-increasing under 
local operations (acting separately on A and B), and hence the 
only way the subsystems become entangled and gain informa-
tion about each other is by interacting. We will return to the 
latter below.

Natural Atomic Probabilities 
In Information Theory

We have recently shown [33] that there is an information-theo-
retic justification for performing Löwdin symmetric transfor-
mations [43] on the atomic Hilbert space, to produce ortho-
normal atomic orbitals of maximal occupancy for the given 
wavefunction, which are derived in turn from atomic angular 
symmetry subblocks of the density matrix, localized on a 
particular atom and transforming to the angular symmetry of 
the atoms. This alternative information derivation [33] was 
achieved by minimizing the entropy deficiency between the 
joint density rAB (a reduced first density matrix of a composite 
fermionic system of the subsystems A and B) with respect to 
the atomic independent subsystems rA and rB , such that

 
: ( ( ) 1) 0AB A B ABS Tr , (30)

according to the constraint

 ( ) 1ABTr . (31)

The advantages of these kind of atoms-in-molecules 
(AIM) approaches [44, 45] are that the resulting natural atomic 
orbitals are N- and v-representables [33], positively bounded, 
and rotationally invariant [46, 47]. An analogous informa-
tion-theoretic approach was derived [48] in relation with the 
Hirshfeld stockholder partitioning of the molecular electron 
density in Cartesian space [14]

Hilbert Space Partitioning 
in Molecular Fragments

According to the preliminaries above we have recently pro-
posed new measures of correlation and entanglement through 
marginal (H-type) and non-marginal (R-type) von Neumann 
entropies [31,32]. In this section we will briefly summarize the 
arguments which support the use of H-type entropies as good 
measures of entanglement, before proceeding to analyze their 
capabilities for chemical use. As we have mentioned above, 
any good measure of entanglement should not increase the 

quantum correlations by local transforming the subunits of 
the whole system through classical communication. Besides, 
it was mentioned that entanglement can only be created by 
global operations between subsystems by provoking their 
interaction. Taking this into account, we have proposed [31] 
that a molecule might be considered as a system formed by 
atomic subsystems, which could be studied through atomic 
or molecular fragments by means of natural atomic probabili-
ties [33]. These probabilities are obtained by diagonalizing 
the atomic blocks (one center local transformation) of the 
molecular density matrix which transforms as angular symme-
try representations of the isolated atoms, the resulting ortho-
normal orbitals are thus naturally optimal for the atom in the 
molecular binding environment. Then, the whole set of diago-
nalized atomic orbitals is symmetrically orthogonalized as to 
remove the interatomic overlap, while preserving the atom-
like character of the orbitals as nearly as possible [46]. Thus, 
the natural atomic probabilities are obtained by local unitary 
transformations and partial tracing of the molecular density 
matrix which should decrease the entanglement (Eqs. 26 and 
29) by losing information between subsystems. The result-
ing density matrix is atomic-block diagonal and its spectral 
decomposition reduces to the atomic angular symmetry instead 
of the irreducible representation of the symmetry point group 
of the molecule, hence it can not be reduced to a convex sum 
of independent subsystems, and therefore its entanglement is 
not zero. It has been discussed that marginal density matrices 
with trace-class operators may have their own diagonal repre-
sentations in terms of orthonormal and complete states in their 
respective subspaces which do not have marginal (subsystem) 
probabilities of the composite probability and as a result, the 
conditional entropies may be negative [49, 50]. This in fact 
was used to define a new class of entropies which reveal inter-
esting features of quantum entropies [31, 32]. In this study we 
have restricted ourselves to the study of a class of entropies 
(H-type) which possess marginal probabilities of molecu-
lar fragments through global operations (joint probability) 
which permit to reveal their interaction. Thus, we may define 
atomic density operators through natural atomic probabilities 
in Cartesian space

 
2( ) ( )A

ilm ilm
ilm
p A A . (32)

And then we may define molecular fragments in an analo-
gous way

 1
( )

M
M

A
A . (33)

In Hilbert space we may define a measure of quantum cor-
relations between molecular fragments for a bipartite system 
through natural atomic probabilities and their joint probability. 
As we mentioned before, in the study of a bipartite system 
decomposed through a Schmidt orthogonalization, there are no 
more than N states that might be entangled (Eqs. 15 and 16). 
In the natural atomic decomposition scheme we employ there 
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are m states pertaining to molecular fragment A, i.e., {pi(A); i 
= 1 to m} with n states corresponding to molecular fragment 
B: { pj(B); j = 1 to n}, thus, we may define the joint entropy 
through global operations by correlating m × n states as

 
( ) ( )

( , ) i j
ij

p A p B
p A B

m n
. (34)

Providing that the following constraints are met:

( , ) ( ) ( ) ( / ) 1ij i j ij
i j i j i

P A B P A P B P A B . (35)

And the marginal probabilities are written as
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P A B
P A B

P A B
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We are now in position of using definitions of section 
2.1, related to the von Neumann entropies, taking into account 
that in our natural atomic scheme of probabilities, equality 
in Eq. (19) holds, and instead of referring to observables we 
deal with subsystems (molecular fragments), that is why von 
Neumann entropies are adequate for our study, though we keep 
the H-terminology to emphasize the orthogonal and commut-
ing properties of the subspaces we are dealing with. It is easy 
to show that all relations concerning to H(A), H(B), H(A,B), 
H(A:B) and H(A/B) are fulfilled with the definitions above 
(Eqs 34-36), along with some useful inequalities [31] which 
follow immediately from Eqs. (5)-(9),
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( , ) ( : )

H A
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H A B H A
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H A B
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H A B H B A
H A B H A B

 (37)

Results and discussion

In the present study we analyze novel von Neumann marginal 
entropies of bipartite composite systems in Hilbert space to 
assess their utility for revealing the expected critical points 
in the density profile of the dissociation processes of small 
chemical systems such as HCl and Cl2. The electronic struc-
ture calculations performed in this study were carried out with 
the Gaussian 03 suite of programs [51] and the natural atomic 
probabilities were obtained by use of the NBO 5.G program 
[52]. Regions of charge accumulation and depletion were ana-
lyzed by means of the isosurface of the Laplacian of the den-
sity (LAP) [53]. The bond breaking along with electrophilic 
and nucleophilic regions were studied through the molecular 
electrostatic potential (MEP) [53].

The Cl2 molecule was calculated at the UB3LYP/6-31G 
level of theory by requesting that the HOMO and LUMO be 
mixed so as to destroy spin and spatial symmetries [51] and 
allow an homolytic kind of bond breaking. In order to achieve 
the dissociation we scan the molecule from 0.4 to 6.4 Å in order 
to cover twice the van der Waals radii of the atoms. Our results 
are depicted in Figures 1 to 13, from where several interesting 
observations can be mentioned. The energy profile is shown in 
Figure 1 from which an equilibrium energy of -920.316472 a.u. 
at the internuclear equilibrium distance of 2.16 Å is obtained.

The correlation energy is depicted in Figure 2, which was 
obtained by measuring the difference between the DFT and the 
UHF values, with a maximum at 1.3 Å.

Fig. 2. Energy Correlation energy (EUB3LYP – EUHF) (a.u.) for the dis-
sociation process of the chlorine molecule.

Fig. 1. Energy profile (a.u.) for the dissociation process of the chlo-
rine molecule.
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In order to analyze the von Neumann entropies we set 
A=B=Cl as the bipartite system and we may note that all 
inequalities given in Eq. (37) are fulfilled (conservation rela-
tions were also checked). Besides, the conditional entropies 
plotted in Figure 3 (H(A/B) or H(B/A) for this molecule) are 
very much alike the entropies of the subsystems (H(A) or 
H(B)), and three critical points are clearly observed. At 0.5 Å 
the entropic quantities in Figure 3 show a minimum which can 
be associated to the accumulation of charge in the internuclear 
region as it can be observed from Figure 4 wherein mapping 
of the Laplacian to the isosurface of the density at the plane of 
the molecule is depicted.

At 1.0 Å, the conditional and subsystem entropies show a 
very pronounced maximum which is associated with the sepa-
ration of the atoms as it may be observed from the Laplacian 
of the density at the internuclear plane where a slight charge 
depletion (in dotted lines) is shown (see Figure 5).

At 2.6 Å, the entropic measures show a minimum 
where the curvature of the entropies change abruptly, this 
occurs at the equilibrium distance which may be corrobo-
rated by means of the map of the MEP calculated at the 
isosurface of the density at the internuclear plane. Figure 
6 shows two separate regions of negative charge (electro-
philic region).

Fig. 4. Isosurface of the Laplacian at an internuclear distance of 0.5 
Å for the chlorine molecule (charge accumulation in solid lines and 
charge depletion in dotted lines).

Fig. 3. von Neumann conditional entropy H(B/A) (open boxes) and 
the entropy for the susbsystem H(B) (solid triangles) for the dissocia-
tion of Cl2.

Fig. 5. Isosurface of the Laplacian at an internuclear distance of 1.0 
Å for the chlorine molecule (charge accumulation in solid lines and 
charge depletion in dotted lines).

Fig. 6. Isosurface of the MEP at an internuclear distance of 2.6 Å for 
the chlorine molecule.
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At 4.0 Å, a plateau region starts for the entropies, which 
may be associated with the final dissociation stage of the 
atoms (See Figure 7 for the MEP).

In Figure 8, the mutual and the joint von Neumann entro-
pies are presented for the dissociation of Cl2 . As in the case 
of the conditional and subsystem entropies, we may notice 
the same critical points we have already discussed, however, 
the behavior of these entropies shows an interesting inverse 
relationship, wherein the mutual entropy, which measures the 
correlation (and entanglement) of the subsystems seem to have 
a maximum at the equilibrium distance and becomes stabilized 
as the atoms become dissociated, which is in contrast with the 
expected classical behavior in which the one expects that the 
entropy increases as the atoms behave as independent and iso-

lated systems. This is a clear feature of long range correlations 
which may be due to entanglement.

The HCl molecule was dissociated by scanning the 
interatomic distance from 0.3 Å through 3.9 Å to cover a 
region up to twice the van der Waals radii of chlorine by ana-
lyzing the interaction between the subsystems A (chloride) 
and B (hydrogen).The calculated energy at the internuclear 
equilibrium distance of 1.32 Å was -460.776280 a.u. at the 
UB3LYP/6-31G level of theory. In Figure 9 we have plotted 
the energy profile for the dissociation process of HCl. We 
may note that the correlation energy profile is very similar to 
the one of the total energy. As in the case of the Cl2 molecule, 
all entropies obey the balance relationships and inequalities 
of Eq. (37).

Fig. 9. Energy profile (a.u.) for the dissociation process of the HCl.

Fig. 7. Isosurface of the MEP at an internuclear distance of 4.0 Å for 
the chlorine molecule.

Fig. 8.  H(A:B) (solid circles) and joint H(A,B) (open circles) von 
Neumann entropies for the dissociation process of the Cl2 molecule.

Fig. 10. Charges for the subsystems A=Cl (NA open triangles) and 
B=H (NB open circles) along the dissociation path for the hydrogen 
chloride molecule. RX stands for the internuclear distance.
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In Figure 10 the subsystem charges are displayed in order 
to show the charge transfer process between subsystems along 
the dissociation path.

The conditional entropies are depicted in Figure 11, show-
ing the non symmetric nature of this molecule, i.e., H(A/B) ≠ 
H(B/A), which follow the behavior of the corresponding entro-
pies of the subsystems, H(A) and H(B), respectively (Figures 
12 and 13) in agreement with Eq. (37), particularly H(A|B) ≤ 
H(A).

The mutual and joint measures are presented in Figure 14, 
which behave as in the case of Cl2 , i.e., they have the opposite 
behavior with the mutual quantity measuring correlations and 
decreasing as the internuclear distance grows up to a point 
wherein it gets stabilized, i.e., the atoms have long range inter-
actions most likely due to entanglement.

Analyses of the maps of the Laplacian and the MEP on 
the isosurface of the density for the HCl molecule are shown 
in Figures 15-20. In Figure 15, the Laplacian shows an impor-
tant region of depletion of charge on the H atom, which is 
slightly embedded into the chloride atom, which seem to cause 
a charge deformation on the chloride atom. The latter is clearly 
shown in all entropic measures at 0.5 Å (Figures 11-14).

 Then, at a 0.7 Å (Figure 16) the Laplacian indicates a 
clear separation between the isosurface of each atom (chlo-
ride-acummulation and hydrogen-depletion), which is revealed 
by all entropic measures as one can see from Figures 11-14.

Next, at a 1.3 Å the Laplacian indicates a complete sepa-
ration of the isosurfaces and most important, the radial symme-
try of the charge which signals the equilibrium geometry along 
the internuclear axis (see Figure 17). This critical point is also 

Fig. 11. von Neumann conditional entropies H(A/B) (solid boxes) 
and H(B/A) (open boxes) for the dissociation path of the hydrogen 
chloride molecule.

Fig. 12. von Neumann conditional entropies H(A/B) (stars) and H(A) 
(open circles) for the dissociation path of the hydrogen chloride mol-
ecule.

Fig. 13. von Neumann conditional entropies H(B/A) (stars) and H(B) 
(open circles) for the dissociation path of the hydrogen chloride mol-
ecule.

Fig. 14. von Neumann mutual H(A:B) (solid boxes) and joint entro-
pies H(A,B) (open boxes) for the dissociation path of the hydrogen 
chloride molecule.
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revealed in all entropic measures as a change in the curvature 
of these quantities (Figures 11-14), except for the H(A=Cl) 
which show a maximum in that point (Fig 13).

At a 1.9 Å the MEP shows the beginning of the disso-
ciation process by a separation of the isosurfaces of the atoms 
(see Figure 18), which is also shown in the entropies as a new 
change in the curvature of these measures at this point (Figs 
11-14).

Finally, at a 2.5 Å, the MEP indicates the rupture of the 
bond as the atoms get separated and their isosurfaces barely 
interact (see Figure 19). This critical point is also revealed by 

Fig. 15. Map of the Laplacian to the isosurface of the density at the 
molecular plane at an internuclear distance of 0.5 Å. (charge accumu-
lation in solid lines and charge depletion in dotted lines).

Fig. 16. Map of the Laplacian to the isosurface of the density at the 
molecular plane at an internuclear distance of 0.7 Å. (charge accumu-
lation in solid lines and charge depletion in dotted lines) 

Fig. 17. Map of the Laplacian to the isosurface of the density at the 
molecular plane at an internuclear distance of 1.3 Å. (charge accumu-
lation in solid lines and charge depletion in dotted lines).

Fig. 18. Map of the MEP to the isosurface of the density at the molec-
ular plane at an internuclear distance of 1.9 Å.

Fig. 19. Map of the MEP to the isosurface of the density at the molec-
ular plane at an internuclear distance of 2.5 Å.
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all entropic measures (see Figs 11-14). It is worth mentioning 
that most of the critical points above discussed are present in 
the charge transfer profile shown in Figure 10.

Conclusion

In the present study we have employed novel von Neumann 
marginal entropies of bipartite composite systems in Hilbert 
space (H-type entropies) to assess their utility for revealing 
all the critical points in the density profile of the dissociation 
processes of small chemical systems such as HCl and Cl2, 
which are not present in the energy profile. Our study revealed 
regions of charge accumulation and depletion that were ana-
lyzed by means of the isosurface of the Laplacian of the den-
sity [54]. The H-type entropies also revealed bond dissociation 
cleavage along with electrophilic and nucleophilic regions 
which were studied through the Molecular Electrostatic 
Potential. It is worth mentioning that we also performed a 
basis set analysis to assess the reliability of our observations 
by using different basis sets such as the 6-311G, 6-311+G*, 
6-311+G**, 6-31G, 6-31+G*, 6-31+G**, and 6-31G* ones, 
and the structure of the H-entropies remain the same as dis-
cussed throughout the study. Furthermore, calculations of the 
counterpoise correction [55] for the HCl molecule were also 
performed to assess the so called basis set superposition error 
(BBSE) [56], again the structure of the H-type entropies do not 
change.

Aside of the potential use of von Neumann entropies as 
Hilbert space descriptors of chemical reactivity and processes, 
their utility as measures of entanglement has been recently 
claimed [31].
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