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Abstract. A brief perspective of the development of the density 
functional theory of chemical reactivity since the identification of the 
chemical potential with the electronegativity in 1978 is presented. 
The reactivity concepts are examined together with the chemical 
principles associated with them. Then, the interaction energy between 
a nucleophile and an electrophile is analyzed in order to illustrate the 
relevance of these concepts to characterize global reactivity and site 
selectivity trends.
Key words: Density functional theory, electronegativity, chemical 
potential, hardness, Fukui function, dual descriptor.

Resumen. Se presenta una breve perspectiva del desarrollo de la 
teoría de funcionales de la densidad de la reactividad química, a partir 
de la identificación del potencial químico con la electronegatividad 
en 1978. Se examinan los conceptos de reactividad junto con los 
principios químicos asociados con ellos. Posteriormente, se analiza la 
energía de interacción entre un nucleófilo y un electrófilo para ilustrar 
la relevancia de estos conceptos para caracterizar tendencias de reac-
tividad tanto globales como de selectividad de sitios.
Palabras clave: Teoría de funcionales de densidad; electronegativi-
dad, potencial químico, dureza, función de Fukui, descriptor dual.

1. Introduction

Density functional theory (DFT) has become the dominant 
tool in chemistry and physics for calculations of electronic 
structure [1,2]. Through the development of rather accurate 
approximations to the exchange-correlation energy func-
tional [3], the Kohn-Sham (KS) method has been extensively 
and successfully applied to the study of simple and complex 
chemical systems [4]. Actually, by this approach it is possible 
to determine thermodynamic, kinetic and structural proper-
ties with a precision comparable to that of correlated ab initio 
methods, but at a much lower computational effort.

In addition, DFT has provided a very solid framework 
for the study of chemical reactivity [1,5-8]. Through this 
approach it has been possible to identify with fundamental 
variables of DFT chemically meaningful concepts that had 
been established intuitively, like the electronegativity and the 
chemical hardness. This identification has been very impor-
tant to determine their absolute values and to understand the 
principles associated with them. Additionally, it has also been 
possible to derive new concepts, of global and local type, 
that contain very important information about the response 
of a chemical species when it interacts with different types of 
reagents.

Since the density functional theory of chemical reactiv-
ity may be considered to have been born three decades ago, 
with the work on electronegativity of Parr, Donnelly, Levy 
and Palke [9], the object of the present work is to provide a 
brief perspective of its development. Thus, we begin, in Sec. 
2, with the analysis of the concepts that emerge from DFT and 
the principles associated with them. Then, in Sec. 3 we will 
discuss the interaction energy between a nucleophile and an 
electrophile through the concepts of DFT. Finally, in Sec. 4, 
some concluding remarks will be presented.

2. The concepts

The inherent chemical reactivity of a molecule may be dis-
cussed through response functions that describe the way in 
which the electronic structure of the reference state, which 
usually corresponds to that of the isolated species, is going to 
be affected by the presence of the other reagent.

In the initial stages of the interaction between a molecule 
and a reagent, when they are far apart from each other, one can 
observe basically two effects. One of them is concerned with 
the fact that the presence of the reagent changes the external 
potential felt by the electrons of the molecule, so that they are 
subject not only to the external potential due to its nuclei, but 
also to the external potential due to the nuclei and electrons of 
the reagent. The other effect comes from the possible electron 
transfer between the molecule and the reagent that may lead to 
a change in the total number of electrons of the molecule with 
respect to its value when it is isolated.

Thus, the description of the inherent chemical reactivity 
of a given species, through response functions, may be carried 
out in terms of the derivatives of the total energy with respect 
to the number of electrons, with respect to the external poten-
tial, or with respect to both.

It turns out that DFT provides a rather appropriate frame-
work for the calculation of these derivatives. In DFT the 
ground state total energy for an N-electron system is expressed 
in terms of the three-dimensional ground-state electronic den-
sity ρ(r) and the external potential v(r) in the form [1]

 [ ] [ ] ( ) ( )E F d vr r r , (1)

where F[ρ] is the universal functional of Hohenberg-Kohn 
given by the sum of the electronic kinetic energy functional 
and the electron-electron interaction energy functional, and 



�   J. Mex. Chem. Soc. 2008, 52(1) José L. Gázquez

 
( )N dr r , (2)

guarantees the proper normalization of the electron density.
The ground-state electronic density can be obtained from 

the solution of the Euler-Lagrange equation corresponding to 
the minimization of the energy given in eq (1), subject to the 
restriction given by eq (2), that is,

 
( )

( ) ( )v

E Fv r
r r

, (3)

where µ, the undetermined Lagrange multiplier, is the chemi-
cal potential that measures the escaping tendency of the elec-
trons from a system. Electrons flow from places with higher 
chemical potential to places with lower chemical potential up 
to the point in which µ becomes constant throughout space.

a. Electronegativity and hardness

The basic relationship of the density functional theory of 
chemical reactivity is, precisely, the one established by Parr, 
Donnelly, Levy and Palke [9], that links the chemical potential 
of DFT with the first derivative of the energy with respect to 
the number of electrons, and therefore with the negative of the 
electronegativity c,

 v

E
N . (4)

The next fundamental aspect comes from the identification 
of the concept of chemical hardness with the second derivative 
of the energy with respect to the number of electrons [10], that is,

 
2

2
vv

E
NN

. (5)

The definitions of the chemical potential and the chemical 
hardness given by eqs (4) and (5) require from the knowledge 
of the energy as a function of the number of electrons. This one 
has been established through the extension of DFT to open sys-
tems with noninteger number of electrons, based on the grand 
canonical ensemble, that leads, in the limit of zero temperature, 
to a non smooth expression for the energy as a function of the 
number of electrons, given by a series of straight lines con-
necting the ground-state energies of the systems with integer 
number of electrons [11]. The joined straight line structure has 
also been shown to be required by any size consistent method, 
without invoking the grand canonical ensemble [12, 13]. Thus, 
a very important consequence of this behavior is that the left 
(µ-) and right (µ+) first derivatives are not equal, that is, for an 
N0-electron system, with N0 being an integer, the straight line 
structure leads to [11]

 
0 01N N

v

E E E A
N

, (6)

and
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v
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N

, (7)

where I and A are the vertical first ionization potential and the 
vertical electron affinity, respectively. It is remarkable that the 
average of the one-sided derivatives leads to the definition of 
electronegativity given by Mulliken [14],

 

0
0 1 1

2 2( ) ( )
v

E I A
N

. (8)

For the hardness, which is given by the second derivative, 
according to the straight line structure, is zero when evaluated 
from the left or from the right and it is not defined for inte-
ger number of electrons. However, Ayers and Parr [15] have 
shown that some information remains, namely [13]

 
0( ) ( ) ( ) ( ) ( ), 1 1N x x I A x x  (9)

where δ(x) is the Dirac delta function.
Now, although from a chemical viewpoint, it makes sense 

to have different responses for charge removal and charge 
addition processes, the joint straight line structure destroys 
second order effects. Thus, in order to include them, an alter-
native approach is provided by the smooth quadratic interpola-
tion around the reference point [10],

 
21

2 ( )E N N . (10)

The finite differences approximations to the first and sec-
ond derivatives, for an N0-electron system, that results from 
this smooth quadratic interpolation are1,10

 2
I A , (11)

and

 I A. (12)

The relationships given by eqs (11) and (12) provide a 
strong support to the identifications established, because when 
one uses experimental information for I and A to calculate µ 
and η, one finds that, in general, the quantities obtained from 
eq (11) follow the same trends as those of the electronegativity 
concept of Pauling [16], while the quantities obtained from eq 
(12) show, in general, the same trends as those of the chemical 
hardness concept of Pearson [17].

Thus, in this case the energy and its derivatives are con-
tinuous functions of the number of electrons around N0, but the 
response functions for charge addition or removal processes 
are the same.

Now, in terms of orbital energies, the approximate, but 
conceptually useful expressions for the chemical potential and 
the chemical hardness are [1],
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1
2 ( )L H , (13)

and

 L H , (14)

where εH and εL are the eigenvalues of the highest occupied 
molecular spin-orbital (HOMO) and the lowest unoccupied 
molecular spin-orbital (LUMO), respectively.

In the case of the Kohn-Sham orbitals, the approximations 
involved in eqs (13) and (14), are related with the discontinu-
ity of the exact exchange-correlation potential,11,18,19 and lead 
to larger values of µ and to lower values of η in comparison 
with the values obtained through the total vertical energy dif-
ferences required to calculate them with eqs. (11) and (12).

While in the case of the Hartree-Fock orbitals, the 
approximations involved in eqs (13) and (14) are related with 
Koopmans theorem, and although the values thus obtained lie 
close to the values obtained from the Hartree-Fock vertical 
energy differences of eqs (11) and (12), they do not incorpo-
rate the correlation effects.

b. Electrophilicity, electroaccepting power and 
electrodonating power

The first ionization potential and the electron affinity measure 
the capability of a chemical species to donate and to accept 
one electron, respectively. However, many chemical interac-
tions may be explained through charge transfer processes that 
may involve fractional amounts of charge.

In this context, Parr, Von Szentpály, and Liu [20] have 
defined an electrophilicity index that measures the energy 
change of an electrophile when it becomes saturated with 
electrons. For this purpose, they have considered a chemical 
species immersed in an idealized bath of electrons, with zero 
chemical potential. Thus, the species will accept electrons 
until the point in which its chemical potential becomes equal 
to that of the bath. From eq. (10), this condition implies that, 
at the minimum, ∆Nmax = –µ/η > 0, and the energy change 
is equal to ∆E = –µ2/2η < 0, from which electrophilicity is 
defined as

 
2 2 . (15)

Recently, a quadratic interpolation for the energy as a 
function of the number of electrons, in which the response 
functions for the charge addition and the charge subtraction 
processes are differentiated, has been proposed [21]. In this 
case, it is assumed that for the interval between N0 – 1 and N0 
eq. (10) adopts the form

 
21

2 ( )E N N , (16)

while for the interval between N0 and N0+1, it takes the form

 
21

2 ( )E N N , (17)

where µ  are the chemical potentials and η  are the chemical 
hardnesses, in their corresponding intervals. This procedure, 
together with the concept of a bath of electrons that represents 
the chemical environment in which a chemical species is 
immersed, and whose chemical potential may be adjusted to 
donate or accept charge, leads to the concepts of electrodonat-
ing (ω-) and electroaccepting (ω+) powers,

 ω- = (µ-)2/2η–        and       ω+ = (µ+)2/2η+. (18)

If µ- = µ+ = µ   and η- = η+ = η  then one recovers the 
electrophilicity index ω– = ω+ = ω = µ2/2η.

One can show that the definitions given by eq. (18) are not 
necessarily linked to the point at which the species becomes 
saturated with electrons. That is, eqs. (15) or (18) establish 
that the electrodonating or the electroaccepting powers may 
be quantified in terms of the chemical potential and the chemi-
cal hardness, independently of the fractional amount of charge 
donated or accepted. However, it is important to note that in 
the case of ω+, the charge acceptance process is such that it 
stabilizes the system, so that larger values imply a larger capa-
bility to accept electrons, while in the case of ω-, the charge 
donating process is such that it destabilizes the system, so that 
smaller values imply a larger capability to donate electrons.

Thus, the electrodonating and the electroaccepting powers 
show a similar behavior to that of the first ionization potential 
and the electron affinity, respectively, although in the case of 
I and A one measures the capability of a chemical system to 
donate or to accept one electron, while in the case of ω- and 
ω+ one measures the capability of a chemical system to donate 
or to accept a small fractional amount of charge.

A simpler approach that also differentiates the response to 
charge donation from the response to charge acceptance, has 
also been proposed [21] by taking into account that the direc-
tion of flow of charge is fundamentally driven by the chemical 
potential, since in this context one may assume in eqs. (16) and 
(17) that η- = η+ = η, and that η = µ+ – µ-.

When these assumptions are combined with the energy 
differences for I and A, in eqs. (16) and (17), one finds that,

 
1
2 I A ,  

1
4 3I A   and  1

4 3I A . (19)

Thus, by this procedure the hardness remains proportional 
to the difference of the first ionization potential and the elec-
tron affinity, while µ- and µ+ show differences related with the 
fact that they govern the charge donation and charge accep-
tance processes, respectively.

c. Fukui function, dual descriptor 
and linear response function

In the preceding section we have discussed the concepts that 
arise when one considers the derivatives of the energy with 
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respect to the number of electrons, so now we will consider 
the response functions that come up when one considers deriv-
atives with respect to the external potential.

From conventional first-order perturbation theory one can 
show that [1]

 
( )
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E
v

r
r

, (20)

so that using this expression and eqs. (4) and (5) one has that,
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where P(r, r') is the conventional linear response function [1], 
f(r) is known as the Fukui function [22], and Df(r) is known as 
the dual descriptor [23, 24].

The linear response function, eq. (21), measures the change 
in the electronic density at point r due to a change in the exter-
nal potential at point r', thus it provides information about 
the capacity of the electronic cloud of a molecule to polarize 
because of the presence of a reagent. Its evaluation may be car-
ried out by means of second-order perturbation theory [1].

Now, in the case of the Fukui function, eq. (22), one needs 
first to establish the dependence of the electronic density in 
the number of electrons, through the extension of DFT to open 
systems with noninteger number of electrons, based on the 
grand canonical ensemble and in the limit of zero tempera-
ture. As in the case of the energy, one finds that the electronic 
density has slopes discontinuities at the integer numbers of 
electrons, due to the joint straight line structure of the electron 
density for noninteger number of electrons [11]. Therefore, the 
left (f -(r)) and right (f +(r)) derivatives are different, that is,
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while the arithmetic average of the one-sided derivatives leads to
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In eqs. (24)-(26), ρN0-1(r), ρN0(r), and ρN0+1(r) are the 
electronic densities of the N0 - 1, N0 -, and N0 + 1-electron sys-
tems, calculated for the external potential of the ground-state 
of the N0 -electron system.

Ayers and Parr [15] have made use of the variational 
principle for determining the Fukui function and the chemi-
cal hardness of an electronic system, derived by Chattaraj, 
Cedillo and Parr [25], to show that, from an energetic view-
point, the best way to remove a fraction of an electron DΝ 
from a system, is to remove it from the place defined by the 
function f - (r), while the best way to add it is at the place 
defined by the function f + (r). This means that a molecule 
donates charge from the regions where f - (r) is large when it 
is attacked by an electrophilic reagent, and it accepts charge 
at the regions where f + (r) is large when it is attacked by a 
nucleophilic reagent, providing this way information of site 
reactivity within a molecule.

For the dual descriptor, eq. (23), which is given by the 
second derivative, according to the straight line structure, is 
zero when evaluated from the left or from the right and it is 
not defined for integer number of electrons. However, Ayers 
[13] has shown that, similarly to the case of the energy,

 0( ) ( ) ( ( ) ( )) ( ), 1 1N xf f f x xr r r . (27)

Thus, in order to include the second derivative of the den-
sity with respect to the number of electrons, one can perform, 
as in the case of the energy, a smooth quadratic interpolation 
around the reference point,

 
0 21

2( ) ( ) ( ) ( )f N f Nr r r . (28)

The finite differences approximations to the first and sec-
ond derivatives, for an N0-electron system, that results from 
this smooth quadratic interpolation are, eq. (26) for f 0 (r), and

 ( ) ( ) ( )f f fr r r . (29)

Thus, according to the interpretation given to the Fukui 
functions, those sites where the sign of the dual descriptor is 
positive are favored for a nucleophilic attack, while those sites 
where the sign of the dual descriptor is negative are favored 
for an electrophilic attack.

The approximate expressions for the Fukui functions 
in terms of the Kohn-Sham orbitals may be established by 
approximating the electron densities of the N0 - 1- and the N0 
+ 1-electron systems with the orbitals set corresponding to the 
N0-electron system, because then, using eqs. (24) and (25), one 
finds that [22, 26]

 ( ) ( )Hf r r       and    ( ) ( )Lf r r , (30)

where ρΗ(r) and ρL(r) are the densities of the highest occupied 
and lowest unoccupied molecular orbitals, respectively.

In the case of the dual descriptor, using eqs (29) and (30), 
one has that
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 ( ) ( ) ( )L Hf r r r . (31)

Thus, one can see that the Fukui function is closely related 
to the frontier orbitals. However, for the case of the Kohn-
Sham orbitals, the Fukui function, in contrast with frontier 
orbital theory, includes the orbital relaxation effects associated 
with electron addition or removal. In some cases these effects 
are very important.

The case of the Hartree-Fock orbitals is quite similar to 
that of the Kohn-Sham orbitals, except that in this case, the 
correlation effects are not considered.

d. The principles

Through the identifications established in this section for the 
concepts in terms of fundamental variables of DFT, it has been 
possible to achieve a better understanding of the principles 
associated with them, and to introduce new principles. This 
is a very important aspect, because these principles govern 
chemical interactions and therefore, through them, one can 
infer, in many cases, the course of a reaction.

Accordingly, as it was already mentioned before, the 
chemical potential measures the escaping tendency of the elec-
trons from a system. Electrons flow from places with higher 
chemical potential to places with lower chemical potential 
up to the point in which µ becomes constant throughout the 
space. Thus, one can see that, from the identification of the 
electronegativity with the negative of the chemical potential, 
the principle of electronegativity equalization, proposed by 
Sanderson [27, 28], follows immediately.

The hard and soft acids and bases (HSAB) principle pro-
posed by Pearson [17], has been very important for the under-
standing of acid-base chemistry. The principle stays that hard 
acids prefer to bind with hard bases, and that soft acids prefer 
to bind with soft bases.

The first DFT analysis of the HSAB principle were based 
on the acid-base reaction [29-31],

 A B AB, (32)

and were oriented to establish that the interaction between spe-
cies of similar hardness were energetically favored.

Recently, Ayers et al [32-36] have considered the exchange 
reaction,

 h s s h h h s sA B A B A B A B , (33)

where Ah is a hard acid, As is a soft acid, Bh is a hard base, and 
Bs is a soft base. According to the HSAB principle the equi-
librium in this reaction is displaced to the right. Thus, using a 
simple charge transfer model based on eq. (10), he was able to 
show that the reaction energy for this case is always less than 
zero. Thus, this result implies that the exchange reaction, eq. 
(33), is always exothermic in agreement with the HSAB prin-
ciple. Because of the assumptions implicit in this approach, 
one can infer that electron transfer is the main contribution 

in the HSAB principle, and that the exceptions to the rule are 
probably due to the fact that in some cases there may be other 
contributions that dominate the interaction.

The maximum hardness principle was first expressed by 
Pearson [37] who concluded that “there seems to be a rule of 
nature that molecules arrange themselves so as to be as hard as 
possible.” Later on, Parr and Chattaraj [38] provided a proof 
based on statistical mechanics that indeed, under conditions of 
constant chemical potential and temperature, a chemical sys-
tem evolves toward the state of maximum hardness.

Other studies of this principle are based on approximate 
expressions for the energy difference between two sates of a 
system, in terms of chemical potential differences and chemi-
cal hardness differences [30, 39, 40]. Through these expres-
sions it has been shown that at constant chemical potential, as 
the total energy increases, the hardness decreases, and as the 
total energy decreases, the hardness increases. A maximum in 
the energy corresponds with a minimum in the hardness, and 
a minimum in the energy corresponds with a maximum in the 
hardness.

The HSAB principle may be interpreted as the result of 
two opposing tendencies, one related to the charge transfer 
process (chemical potential equalization principle), and the 
other one related to the reshuffling of the electronic density 
maximum hardness principle). In this framework a local ver-
sion of the principle has been elucidated [41-43] by assuming 
that when two species interact, they do it through specific 
sites, so that the interaction energy is dominated by the local 
properties of these sites, rather than by the global properties of 
the species. Thus, as in the global HSAB principle, in the local 
HSAB principle one stays that soft acids bind to soft bases 
through their softest sites, while hard acids bind to hard bases 
through their hardest sites.

It is important to mention that the hard and soft sites with-
in a molecule may be obtained from the local softness, which 
is defined as [44]

 

( ) ( ) 1( ) ( ) ( )
v v v

Ns f S f
N

r rr r r , (34)

where eqs. (5) and (22) have been used. The quantity S is the 
global softness, the inverse of the chemical hardness. Thus, 
sites where the Fukui function is large are soft sites, while sites 
were the Fukui function is small are hard sites.

3. The interaction energy

In order to see how the concepts established in the previous 
section may lead to an understanding of reactivity trends, let us 
consider now the initial stages of the interaction between two 
chemical species, a nucleophile that is going to be attacked 
by an electrophile. In this case one may treat the presence of 
the electrophile as a perturbation on the nucleophile, and vice 
versa. Thus, one can perform [23, 24, 45, 46] a second order 
Taylor series expansion of the energy of the nucleophile, as a 
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function of the number of electrons and the external potential 
that leads, for the nucleophile, to

21
2 ( )nuc nuc nuc nuc nucE N N

( ) ( ) ( ) ( )nuc nuc nuc nuc nucd v N d f vr r r r r r
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while for the electrophile it leads to 
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where we have used eqs. (4), (5), (20), (21) and (22).
Now, in the case of eq. (35), the change in the external 

potential is due to the presence of the electrophile, thus

( ') ( ')( ) ' '
' '

elec elec
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elec

Z fv d N dr rr r r
r r r rr R

 

( ')( ) '
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elec

fv N d rr r
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where {Zβ} the sets and {Rβ} represent the nuclear charges 
and the positions of the nuclei of the electrophile, the first two 
terms corresponds to the negative of the electrostatic poten-
tial generated by the electrophile, ( )es

elecv r , and the third term 
corresponds to the modification of the electrostatic potential 
because of the charge transferred from the nucleophile to the 
electrophile,

. elec nucN N N . (38)

In the case of eq. (36), the change in the external potential 
is due to the presence of the nucleophile, therefore

( ') ( ')( ) ' '
' '

nuc nuc
elec

nuc

Z fv d N dr rr r r
r R r r r r

 

( ')( ) '
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fv N d rr r
r r

, (39)

where now the sets {Za} and {Ra} represent the nuclear 
charges and the positions of the nuclei of the nucleophile, and, 
in a similar way, the first to terms of this relation represent the 
negative of the electrostatic potential generated by the nucleo-
phile, ( )es

elecv r , while the last term corresponds to the modifica-
tion of the electrostatic potential because of the charge trans-
ferred from the nucleophile to the electrophile.

Consequently, assuming that the interaction energy is 
given by the sum of the energy change of the nucleophile and 
the energy change of the electrophile, one finds, using eqs. 
(35) - (37) and (39), and correcting for the double counting of 
the interactions, that

 int cov es polE E E E , (40)

where the quantity DEcov is usually called the covalent contri-
bution, and it is given by

21
2( ) ( ) ( )cov elec nuc elec nucE N N

2 ( ) ( ')( ) ( ) ( ) ( ) ( ) ' ,
'

es es elec nuc
nuc elec elec nuc

f fN d f v d f v N d d r rr r r r r r r r
r r

. (41)

The quantity DEes is the electrostatic contribution, and it is 
given by

 
[ ( ) ( )] ( )es
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E d Z vr r R r r , (42)

and the quantity DEpol is the polarization contribution, and it is 
given by

1
2 ' ( , ') ( ) ( ')pol nuc nuc nucE d d P v vr r r r r r

 
1
2 ' ( , ') ( ) ( ')elec elec elecd d P v vr r r r r r . (43)

Note that in the electrostatic contribution we have includ-
ed the nuclear-nuclear repulsion energy that results from the 
interaction of the nuclei of the nucleophile with the nuclei of 
the electrophile.

An analysis of eq. (40), together with eqs (41)-(43) reveals 
several aspects. First, it is important to mention that the inter-
action between the nucleophile and the electrophile is favored 
when the interaction energy is negative, thus, the lower DEint, 
the greater the reactivity.

A very significant issue is related to the fact that the three 
terms contain integrals over functions, whose values depend 
on the position within the molecule. Since the value of the 
integral depends upon how the values of the integrand are 
distributed over the whole space, it means that these functions 
provide information about the reactivity of the different sites 
of the molecule.

Now, DEcov is the main contribution when one considers 
the interaction between neutral and soft species. The second 
term, DEes, is the dominant contribution when the interaction 
involves hard ionic species. Finally, DEpol might be significant 
in hard-soft interactions.

The minimization of the interaction energy, eq (40), with 
respect to the charge transferred DN leads to

 

( ) ( ) ( ) ( ) ( )
,

2

es es
nuc elec elec nuc nuc elec

elec nuc f

d f v d f v
N

J

r r r r r r
,
 
(44)
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where

 

( ) ( ')'
'

elec nuc
f

f fJ d d r rr r
r r

. (45)

Thus, one can see that a high overlap between ( )elecf r  and 
( )nucf r  will lead to a large value of the integral Jf and, conse-

quently, to a large amount of charge transferred. This situation 
implies that the Fukui functions of the electrophile and the 
nucleophile provide information not only on site reactivity, 
but also on orientational selectivity, because of the directional 
properties of them. This can be seen also from the frontier 
orbital approximation to the Fukui function, which means that, 
using eq (30), ( ) ( )L

elec elecf r r  and ( ) ( )H
nuc nucf r r . However, 

it is remarkable that this orientational selectivity may also be 
established using electronic density differences to determine 
the Fukui functions, through eqs. (24) and (25).

It is important to mention that the relevance of eq. (45) 
was first established by Berkowitz [47], who formulated a 
model for the early stages of frontier controlled reactions 
between Lewis acids and bases. In this model it is assumed 
that the chemical potential that is already equalized for both 
the acid and the base, because they already form one system, 
remains equalized after the initial motion of the reactants along 
some reaction coordinate.

Recently, Ayers et al. [48] have shown that the Woodward-
Hoffmann rules for pericyclic reactions may also be explained 
through electronic density differences, by making use of the 
dual descriptor.

In order to see the importance of this local reactivity indica-
tor, from an energetic viewpoint, consider first eqs. (26) and (29) 
to express f +(r) and f –(r) in terms of f 0(r) and Df (r), that is

 0 1
2( ) ( ) ( )f f fr r r , (46)

and

 
0 1

2( ) ( ) ( )f f fr r r . (47)

If eqs. (46) and (47) are used in the last term of eq. (41), 
then there will be a term in the interaction energy correspond-
ing to the Coulomb interaction between the dual descriptor of 
the nucleophile and that of the electrophile of the form [48],

 
2 ( ) ( ')( ) '

'
elec nucf fN d d r rr r

r r
. (48)

Thus, if the positive regions of Dfelec(r) are aligned with 
the negative regions of Dfnuc(r), and vice versa, then the contri-
bution to the interaction energy from the term expressed in eq. 
(18) is negative, indicating that in such case is favorable for 
the reaction to occur.

Now, since the dual descriptor is directly related with the 
changes in the chemical hardness produced by changes in the 
external potential, and since the dual descriptor seems to be 
able to provide rather precise information on site selectivity, 

Morrell, Grand and Toro-Labbé [24] have concluded that the 
selectivity concept in chemistry could be a manifestation of 
the principle of maximum hardness.

�. Concluding remarks

In the preceding sections we have presented a brief perspective 
of the development of the density functional theory of chemical 
reactivity. We have seen that, essentially, it is constructed through 
response functions that are given by the derivatives of the energy 
and of the density with respect to the number of electrons.

On one hand, the identification of the derivatives of the 
energy with respect to the number of electrons with the chemi-
cal potential (electronegativity) and the chemical hardness is 
crucial, because it provides a link with fundamental concepts 
of chemistry.

On the other hand, the association of the response of the 
chemical potential and the chemical hardness to changes in the 
external potential with the derivatives of the density with respect 
to the number of electrons is also crucial, because it allows one 
to express the response of these fundamental concepts to the 
presence of a reagent in terms of electronic density differences.

The chemical potential and the chemical hardness, µ and 
η, are global type response functions that characterize the 
molecule as a whole, while the electronic density ρ(r), the 
Fukui function f(r), and the dual descriptor Df(r) are local type 
response functions whose values depend upon the position 
within the molecule. Thus, the global reactivity parameters 
allow one to characterize global reactivity trends, while the 
local reactivity parameters allow one to characterize site reac-
tivity trends.

In the last three decades, after the work on electronegativ-
ity of Parr, Donnelly, Levy and Palke [9], there have been a 
rather large number of applications of these concepts to a wide 
variety of chemical systems, under many different circum-
stances. Thus, the DFT theory of chemical reactivity has been 
successfully applied, in general, to the understanding of Lewis 
acid-base chemistry, including the Brønsted-Lowry acidity and 
basicity, nucleophilic and electrophilic elimination and substi-
tution reactions and redox reactions, among others.

In conclusion, we have seen that through the use of the 
electronic density as the basic variable, together with the iden-
tification of the chemical potential, the chemical hardness, the 
Fukui function and the dual descriptor, DFT grants a chemi-
cally meaningful language for the study of reactivity in terms 
of concepts and principles that have proven to be very useful 
to understand the behavior of a molecule when it interacts with 
different families of reagents.

Acknowledgments

I wish to thank Alberto Vela and Marcelo Galván for their 
important comments on the manuscript, and appreciate the 
support from Conacyt grant C01-39621.



10   J. Mex. Chem. Soc. 2008, 52(1) José L. Gázquez

References

 1.  Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and 
Molecules; Oxford University Press: New York, 1989.

 2.  Dreizler, R. M.; Gross, E. K. U. Density Functional Theory; 
Springer: Berlin, 1990.

 3.  Perdew, J. P.; Kurth, S. In A Primer in Density Functional Theory, 
Fiolhais, C.; Nogueira, F.; Marques, M. A. L. Eds.; Springer: 
Berlin, 2003; p. 1.

 4.  Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density 
Functional Theory; Wiley-VCH: New York, 2000.

 5.  Pearson, R. G. Chemical Hardness: Applications from Molecules 
to Solids; Wiley-VCH: Oxford, 1997.

 6.  Chermette, H. J. Comput. Chem. 1���, 20, 129-154.
 7.  Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 

103, 1793-1873.
 8.  Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 200�, 106, 

2065-2091.
 9.  Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. 

Phys. 1��8, 68, 3801-3807.
 10.  Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1�83, 105, 7512-

7516.
 11.  Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. Lett. 

1�82, 49, 1691-1694.
 12.  Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 

5172-5175.
 13.  Ayers, P. W. J. Math. Chem. 2008, 43, 285-303.
 14.  Mulliken, R. S. J. Chem. Phys. 1�3�, 2, 782-793.
 15.  Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010-2018.
 16.  Pauling, L. J. Am. Chem. Soc. 1�32, 54, 3570-3582.
 17.  Pearson, R. G. J. Am. Chem. Soc. 1��3, 85, 3533-3539.
 18.  Perdew, J. P.; Levy, M. Phys. Rev. Lett. 1�83, 51, 1884-1887.
 19.  Perdew, J. P.; Levy, M. Phys. Rev. B 1���, 56, 16021-16028.
 20.  Parr, R. G.; Von Szentpaly, L.; Liu, S. B. J. Am. Chem. Soc. 1���, 

121, 1922-1924.
 21.  Gázquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 200�, 111, 

1966-1970.
 22.  Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1�8�, 106, 4049-4050.
 23.  Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 200�, 

109, 205-212.

 24.  Morell, C.; Grand, A.; Toro-Labbe, A. Chem. Phys. Lett. 200�, 
425, 342-346.

 25.  Chattaraj, P. K.; Cedillo, A.; Parr, R. G. J. Chem. Phys. 1���, 103, 
7645-7646.

 26.  Yang, W.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1�8�, 81, 2862-
2863.

 27.  Sanderson, R. T. Science 1��1, 114, 670-672.
 28.  Sanderson, R. T. Chemical Bonds and Bond Energy; Academic 

Press: New York, 1971.
 29.  Chattaraj, P. K.; Lee, H.; Parr, R. G. J. Am. Chem. Soc. 1��1, 113, 

1855-1856.
 30.  Gázquez, J. L. In Chemical Hardness, Sen, K. D.; Mingos, D. M. 

P. Eds.; Springer-Verlag: Berlin, 1993; pp 27-43.
 31.  Gázquez, J. L. J. Phys. Chem. A 1���, 101, 4657-4659.
 32.  Ayers, P. W. J. Chem. Phys. 200�, 122, 141102.
 33.  Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 200�, 123, 086101.
 34.  Ayers, P. W.; Parr, R. G.; Pearson, R. G. J. Chem. Phys. 200�, 

124, 194107.
 35.  Ayers, P. W. Faraday Discuss. 200�, 135, 161-190.
 36.  Chattaraj, P. K.; Ayers, P. W.; Melin, J. Phys. Chem. Chem. Phys. 

200�, 9, 3853-3856.
 37.  Pearson, R. G. J. Chem. Educ. 1�8�, 64, 561-567.
 38.  Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1��1, 113, 1854-

1855.
 39.  Gázquez, J. L.; Martínez, A.; Méndez, F. J. Phys. Chem. 1��3, 97, 

4059-4063.
 40.  Gázquez, J. L. J. Phys. Chem. A 1���, 101, 9464-9469.
 41.  Gázquez, J. L.; Méndez, F. J. Phys. Chem. 1���, 98, 4591-4593.
 42.  Méndez, F.; Gázquez, J. L. Proceedings of the Indian Academy of 

Sciences-Chemical Sciences 1���, 106, 183-193.
 43.  Méndez, F.; Gázquez, J. L. J. Am. Chem. Soc. 1���, 116, 9298-

9301.
 44.  Yang, W. T.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1�8�, 82, 

6723-6726.
 45.  Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum 

Chem. 200�, 101, 520-534.
 46.  Anderson, J. S. M.; Ayers, P. W. Phys. Chem. Chem. Phys. 200�, 

9, 2371-2378.
 47.  Berkowitz, M. J. Am. Chem. Soc. 1�8�, 109, 4823-4825.
 48.  Ayers, P. W.; Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur. J. 

200�, 13, 8240-8247.


