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Abstract. This review discusses the concept of polypharmacology in 
drug discovery and development. The relationship between polyphar-
macology and polypharmacy, drug repurposing, combination of drugs 
and in vivo testing are discussed. Modern applications of polypharma-
cology and polypharmacy in epigenetic and antiviral drug develop-
ment are described as examples. A survey of modern methodologies to 
design and develop multiple-target ligands is presented with a special 
focus on computational-based methods. These approaches include, but 
are not limited to, target fishing, proteochemometric modeling, data 
mining of side effects of drugs, and computer-aided drug repurposing.
Key words: biological space; chemogenomics; chemical space; drug 
repurposing; polypharmacology; polypharmacy.

Resumen. En este artículo se revisa el concepto de polifarmacología en 
el descubrimiento y diseño de fármacos. Se discute la relación que hay 
entre polifarmacología con polifarmacia, reposicionamiento de fárma-
cos, combinación de fármacos y pruebas in vivo. Se describen ejemplos 
de polifarmacología y polifarmacia en el desarrollo de fármacos epige-
néticos y antivirales. Se presenta una revisión de métodos modernos 
para diseñar y desarrollar ligandos dirigidos hacia múltiples blancos 
moleculares con énfasis en métodos computacionales. Estas estrategias 
incluyen, pero no están limitadas a, ’pesca de blancos’, modelado pro-
teoquimiométrico, minería de datos de efectos secundarios de fármacos 
y reposicionamiento de fármacos asistido por computadora.
Palabras clave: espacio biológico; quimiogenómica; espacio quími-
co; reposicionamiento de fármacos; polifarmacología; polifarmacia.

1. Polypharmacology 

Currently, the main paradigm in drug discovery is the develop-
ment of target-specific inhibitors. This also implies molecules 
with high-fold potency and selectivity towards one isoform. 
This mainstream view has its origins in the so-called “magic 
bullet” as enunciated by Paul Ehrlich over 150 years ago. In-
deed, such concept was engraved in the mind of many health 
professionals and researchers as the top achievement in drug 
discovery. However, as years came by, this has proven to be a 
disappointment mainly because of the off-target responses, 
which may involve toxicological concerns or side-effects. For 
example, considering the wide array of enzymatic systems, 
classes and isoforms identified in biology it is no wonder that 
many target-specific agents had been developed via trial-and-er-
ror approaches [1].

Recent statistics show that pharmaceutical industry is 
struggling as many promising drugs fail during the early stages 
of drug development along with the associated significant eco-
nomic disadvantages [2]. This shows we have reached an im-
passe: just between 1996 and 2001 a large number of drugs 
were withdrawn from the market because of similar reasons [3]. 

Furthermore, even selective drugs are not exempt of drug-drug 
interactions which also represent a challenge, especially for 
chronic therapies. After reaching this point, we must ask our-
selves if this mainstream view needs refinement or a drastic 
change of perspective. So if target-based drug discovery has not 
lived up to expectations, what choices are left? What if the so-
called side effects are not “failures” after all? In the right con-
text, multi-target modulation is desired or perhaps mandatory 
for successful therapies [4].

What exactly does polypharmacology mean? Strictly speak-
ing, polypharmacology refers to molecules which are recog-
nized by different molecular targets. The affinity shown towards 
the targets may vary, but as previously mentioned, such com-
pounds may be discarded fearing this promiscuity may trigger 
off-target effects [5]. Thus, we are walking a fine line between 
positive and negative connotations. For that matter polypharma-
cology usually associates with positive outcomes. It involves the 
search of “master key compounds” to tackle chronic diseases, 
for example central nervous system (CNS) disorders share mul-
tifactorial processes that ultimately lead to degeneration, physi-
ologically speaking. Therefore, a single target-inhibition is of no 
use here as complex processes require integral approaches [6].
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Compound promiscuity is a concept closely related to 
polypharmacology. This of course tells us about a molecule that 
interacts with many proteins or receptors. Promiscuity is usual-
ly related to negative connotations, e.g., it is conceptualized as 
unwanted characteristic such as toxic effects due to off-target 
interactions. In turn, compound promiscuity is related to the 
Pan Assay Interference compounds or PAINS. These molecules 
appear to be a jack-of-all-trades with potent binding and activi-
ty, while the truth is they are a master of none. Baell and Waters 
first warned about these “con artists” as they lure naïve chem-
ists or biologists who waste valuable resources with a lost cause 
[7]. Of note, PAINS compounds are not always promiscuous. 
They can be flagged as active because they produce metal che-
lation, chemical aggregation, redox activity, compound fluores-
cence, cysteine oxidation or other kind of interference. Putting 
briefly these concepts together, the pressing matter here is to 
understand and give the right context to “polypharmacology” 
meaning that while related to “chemical promiscuity” we can-
not put them on the same basket any longer.

Polypharmacy is one more concept related to polypharma-
cology. Polypharmacy “can mean the prescribing of either 
many drugs (appropriately) or  too  many  drugs  (inappropriate-
ly). The  term is usually used in the second of these senses, and 
pejoratively. However, when talking about polypharmacy it 
would be wise to qualify it as appropriate or inappropriate” [8].

As of 2014 the number of articles citing “polypharmacolo-
gy” as part of its title and/or as a keyword has increased signifi-
cantly, with almost 200 articles published in the past three years 
only [9]. So a multi-target approach is gaining adepts at steady 
pace. While this shows more promise in the grand scheme of 
drug discovery we must be careful and correctly asses the op-
portunities and challenges of this transition era. We should not 
instantly accept polypharmacology as a panacea of sorts, only 
time and advances in current knowledge will determine the suc-
cess of such paradigm change, we must conserve an objective 
view on the subject with realistic expectations.

Although the road ahead in polypharmacology drug dis-
covery may seem blurry or difficult to achieve, the develop-
ment of polydrugs is currently possible. As discussed in this 
review, the development and application of computational 
methods and tools for in silico drug discovery should be a start-
ing point and compass to navigate the “chemical wilderness”. 
Computational approaches include, but are not limited to, 
chemoinformatics, molecular similarity, docking, molecular 
dynamics, virtual screening and QSAR. 

This review is organized in six sections. After this Intro-
duction, general aspects of multi-target vs. target-specific drugs 
are discussed including the rationale, the ‘master key com-
pound’ concept and safety panels to address the possible un-
wanted effects of drugs multi-targeting. The next part elaborates 
on the relationship between polypharmacology and other major 
concepts in drug discovery, including drug repurposing, combi-
nation of drugs and in vivo testing. The section after that de-
scribes briefly examples of applications of polypharmacology 
and polypharmacy to the development of epi-drugs and antivi-
ral compounds, respectively. It follows a discussion of different 

modern approaches to study systematically polypharmacologi-
cal relationships and design multi-target drugs. A special em-
phasis is made on the concept of chemogenomics. The last part 
of the paper presents conclusions.

2. Multi-target vs. target-specific drugs

As discussed before, the increasing awareness of the large com-
plexity of systems biology is shifting the paradigm in drug dis-
covery from a single-target to a multi-target approach [10]. 
Despite the fact that the latter approach is significantly more 
complicated than the one-drug – one-target strategy (largely in-
fluenced by a reductionist perspective of systems biology) [11], 
it may lead to drugs that are more effective in the clinic. Howev-
er, it has to be considered that multi-target drug design, and 
polypharmacology in general, highly depend on the dose to de-
liver an overall clinical benefit [12]. For instance, a drug may 
have a positive effect at therapeutic doses because of the inter-
action with multiple targets. However, the interaction of the 
same compound with anti-targets at higher doses will lead to 
undesirable side effects [12]. Thus, similar to the appropriate or 
inappropriate polypharmacy discussed by Aronson [8], poly-
pharmacology can also lead to desirable or undesirable (e.g., 
unwanted promiscuity) multi-target drug interactions that will 
depend not only on the nature of the structures of the drugs and 
targets but also on the compound concentrations. The ‘dual-face’ 
of multi-target drugs is schematically illustrated in Figure 1.

2.1. ‘Master key compounds’

A ‘master key compound’ (luckily ‘master key drug’) is a mol-
ecule that binds to a given number of targets that produce a 
desirable clinical effect without hitting (or with a minimum ef-
fect) off-targets that are related to undesirable, secondary effects 
[10]. In a simple analogy with a master key, a ‘master key mol-
ecule’ should have the ability to operate on a group/set of se-
lected targets (doors) but not on any ‘doors’, in particular those 
anti-targets that lead to undesirable side effects. Table 1 illus-
trates examples of master key drugs that are used in the market. 
The table summarizes the name, chemical structure, clinical use 
and the associated molecular target receptors.

Kinase inhibitors are representative yet controversial ex-
amples of master key compounds used in the clinic. Despite the 
fact there are differences in the kinase domains, the binding site 
of ATP is highly conserved across all the kinases. Since the ATP 

Figure 1. The ‘dual-face’ of multi-target compounds and relationship 
with ‘master key drugs’.
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site is targeted by a large number of kinase inhibitors, there are 
selectivity issues and there is a significant challenge to develop 
master key inhibitors of kinases (Figure 2). Several efforts in 
the pharmaceutical industry and academia have been dedicated 
to develop selective kinase inhibitors in order to reduce side 
effects. However, it is also noteworthy that some extremely 
promiscuous kinase inhibitors have shown good clinical perfor-
mance, even when treating unrelated tumors, for instance dasat-
inib which binds to at least 159 kinases [13]. This has not been 
overlooked by the scientific community, which is already 
working on the idea of designing multitarget protein kinase in-
hibitors [14,15]. Currently, there are two strategies to exploit 
polypharmacology against kinases, i.e. combination of selec-
tive compounds and design of ‘selectively nonselective’ i.e., 
master key kinase inhibitors (Figure 3) [10,14]. The former re-
fers to the simultaneous administration of two selective com-
pounds designed to inhibit different kinases in order to achieve 
an enhanced phenotypic effect. The latter, and the most diffi-
cult, consists in merging the inhibitory activity against two or 
more kinases in one single compound with none (or only few) 
off-targets. The key factor in either of the mentioned strategies 

is to identify the targets that should be inhibited simultaneously 
to produce a selective phenotypic effect against the tumor.

2.2. Safety panels

Many of the adverse drug reactions (ADRs) are caused by un-
intentional interaction of a drug with a non-therapeutic target to 
which is given the name “antitarget”. The most frequently 
found antitargets are already well studied and characterized. 
Examples of these receptors are shown in Table 2.

Animal toxicity models are not practical to predict the ad-
verse effects caused by antitargets in humans due to differences 
between species. For instance, human ion channels differs 
greatly from their rodent orthologues. Therefore, the ICH (In-
ternational Conference on Harmonization) guidelines S7A for 
Security Studies, recommend performing antitarget screening 
tests. These tests are ligand binding assays using enzymatic 
methods to obtain data and provide suggestions concerning po-
tential adverse effects of the molecule under study. Antitarget 
screening tests also protects the early volunteers in clinical 
studies from developing ADRs as it is estimated that the 

Figure 2. Examples of poor selectivity of kinase inhibitors. This figure shows the cross-reactivity of dasatinib (A) and sunitinib (B) across the 
kinome. Data was obtained from Karaman et al. [16] and the figure was generated using Kinome Render [17].
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Table 1. Examples of master key drugs approved for clinical use. The name and targets are indicated
Name Structure Clinical use Associated receptors 

Asenapine
Schering- Plough 
(2009)

	
	
	
	
	
	
	

	
	

Antipsychotic

D1 − D4 dopaminergic, 5-HT1A, 
5-HT1B, 5-HT2A-C, 5-HT5A, 
5-HT6, 5-HT7 serotoninergic, a1, 
α2A‑C adrenergic, and H1, H2 
histaminic

Sunitinib
Pfizer (2006)

	
	
	
	
	
	
	

	
	

Anti-cancer
VEGFR, PDFGR, c-Kit, Flt-3, 
RET, colony stimulating factor 1 
receptor (CSF-1R)

Sorafenib
Bayer (2005)

	
	
	

	

Anti-cancer

B-Raf, VEGFR, PDGFR, c-Kit, 
Fms-like tyrosine kinase 3 (Flt-3), 
RET

Dronedarone
Sanofi-Aventis 
(2009)

	
	
	

	

Anti-arrhythmic Sodium, calcium and potassium 
channels, a1, β1 adrenergic
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toxicity in the preclinical stage causes that 30% of the com-
pounds do not advance to the clinical stage.

3.  Polypharmacology and related concepts  
in drug discovery

The interaction of a compound with multiple targets is at the 
core of several major concepts in current drug discovery [10]. 
Herein we further elaborate on these relationships.

3.1. Drug repurposing

In general terms, drug repurposing or repositioning is the iden-
tification of a new clinical use for compounds that have already 
proven to be useful to treat a defined medical condition. It can 
extend only to the conceptual approach or involve the whole 
process, until the new indication is approved by the respective 
institutions. Notably, drug repurposing is not by itself a strate-
gy, since it may be a result of different strategies and methods; 
it can be serendipitous, semi-systematic, or fully systematic, by 

Table 2. Major antitarget receptors
Antitarget receptor Hit rate Adverse Drug Reaction
 hERG channel - Arrhythmia
Serotonin 5-HT2B 14 Valvulopathy, pulmonary hypertension
Serotonin 5-HT2A 11 Cognition impairment, hallucination
a1A adrenergic 10 Arrhythmia, orthostatic hypotension
dopamine D2 9 Confusion, emesis, orthostatic hypotension
histamine H1 6 Weight gain, sedation, somnolence

 a2A adrenergic 6 Hypotension, sedation
dopamine D1 5 Dyskinesia, tremor
M1-5 muscarinic 5 Multiple cardiovascular and metabolic adverse effects, cognition impairment
µ-opioid 3 Sedation, respiratory depression, abuse potential

Figure 3. Examples of the use of polypharmacology against kinases. Compounds AZD6244 and MK-2206 have been used in combination to in-
hibit the MAPK and PI3K pathways to obtain an enhanced phenotypic effect. Compound PP121 inhibits both PI3K and mTOR simultaneously. 
This dual inhibition has been proposed to be more potent than inhibiting either target individually. The rationale behind this idea is that mTOR 
activates a negative feedback loop that inhibits PI3K. The inhibition of mTOR alone results in the blockage of the negative feedback loop and in 
a hyperactivation of PI3K [18].
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means of high-throughput screening or in silico approaches 
[19]. The subjacent principles of drug repurposing imply that 
drugs might have activity against more than one therapeutic tar-
get, i.e., polypharmacology.

Nonetheless, there are many distinct definitions of drug re-
purposing, and there are efforts focused on further condensing 
the different proposals. Recently, Langedijk et al. performed a 
systematic review of the literature in order to unify the other-
wise diverse and sometimes discordant definitions of “drug re-
purposing / repositioning / redirecting / reprofiling / rediscovery” 
and concluded that the main features of these definitions are 
regarding [20]:

 a)  General concept: strategy, process, approach;
 b)  Action performed: identifying, using or developing; 
 c)  Innovative use: for a different disease, patient popula-

tion, dosage or route of administration;
 d)  The product itself: an existing or abandoned pharma-

ceutical active ingredient, patent, medicinal product, 
and so on.

In particular, systematic or rational drug repurposing is of 
current general interest, due to the marked advantages of drug 
repurposing versus conventional drug discovery in terms of 
time, costs, and patients’ safety [21]. More specifically, compu-
tational approaches have proven to be cost-effective, and are 
viable options under several circumstances, such as finding 
therapeutic agents against neglected [22-24] or rare diseases 
[25]. In several recent studies potential alternative activities are 
being uncovered and further investigation is underway to see if 
these compounds can be approved for clinical use for the alter-
native indication. e.g., olsalazine, a drug approved for the treat-
ment of inflammatory bowel disease, was recently identified as 
a novel hypomethylating agent using a chemoinformatic-based 
virtual screening approach [26]. Concisely, olsalazine is being 
investigated as a potential epigenetic drug. Following up this 
successful proof-of-concept, additional computational studies 
have been conducted with the aim of repurpose approved drugs 
as potential epi drugs [19].

3.2. Combination of drugs

Combinations of drugs are clinically relevant for treating a 
variety of chronic medical conditions, such as infectious, met-
abolic, malignant or neurological diseases [8]. A clear exam-
ple is the Highly Active Antiretroviral Therapy or HAART 
used for the treatment of patients infected with the human im-
munodeficiency virus HIV [27]. Combinations of drugs could 
be used to prevent or attack resistance to single agents and to 
improve the clinical effect of the treatment. However, this ap-
proach often ends with polypharmacy (the intake of five or 
more drugs), a well-described clinical condition that can lead 
to increased risks and adverse effects from medications, espe-
cially in the elderly or patients with multiple chronic diseases 
[28, 29].

In the scientific literature, it is generally conceived that the 
development of polypharmacological agents is the next logical 
step once it is known that a single chemical compound may 
affect multiple biological targets (e.g., adverse or off-target ef-
fects) and that combinations of drugs that act on different tar-
gets might have additive or synergic effects against a disease. 
Polypharmacology is believed to be a promising feature of 
drugs that could replace combined drug therapies [30] and thus 
avoid polypharmacy. 

Nonetheless, there is another point of view in which drug 
combinations are included within polypharmacology approach-
es following the multi-target paradigm, although still recogniz-
ing the advantages of multi-target single agents [31]. A third 
approach was developed recently by Gujral et al. after this 
group identified kinases involved in cellular migration that are 
specific for cell type. To accomplish this, they tested polyphar-
macological kinase inhibitors. Their proposal is to exploit poly-
pharmacology of chemical probes to aid in the rational design 
of more potent and specific drug combinations [32]. This last 
approach is supported by the finding that combination therapies 
acting synergistically are also more specific in their pharma-
cological actions when administrated in combination than as 
single agents [33]. Hence, combination of drugs and polyphar-
macology does not necessarily imply more severe adverse ef-
fects when there is a synergic effect, provided that selectivity is 
increased in these cases. 

Finally, the combination of drugs may be used for prevent-
ing adverse effects or severe risks of certain drugs used in 
monotherapy. For example, Zhao et al. discovered that co-ad-
ministration of exenatide substantially reduces the myocardial 
infarction risk found in diabetic patients treated with rosiglita-
zone alone. Both exenatide and rosiglitazone are indicated for 
the treatment of diabetes mellitus type II and they act on differ-
ent targets [34].

3.3. In vivo testing

Several drugs have been identified following an in vivo screen-
ing or natural product mixtures or mixtures of individual 
compounds. In vivo testing is a drug discovery approach that 
distance itself from the ‘classical’ one-target-screening. It has 
been recognized that in vivo screening offers the advantage of 
an early demonstration that compounds may show activity in 
disease-relevant models before proceeding with further devel-
opment. Moreover, despite the limitations and costs of in vivo 
testing, it allows the rapid selection of molecules that exert their 
biological effect through the interaction with multiple-targets 
(present in an in vivo system). Therefore, this methodology 
represents an approach to identify ‘master key compounds’ 
discussed above. In vivo testing of mixture-based combinato-
rial libraries has been used as an effective drug discovery ap-
proach to rapidly screen hundreds or thousands of compounds 
efficiently [35]. Moreover, in vivo testing of mixture-based 
combinatorial libraries has enabled to expand the exploration 
of the chemical space beyond the one populated by currently 
marketed drugs [10].
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4.  Polypharmacology (and polypharmacy):  
case studies

In this section we discuss briefly selected applications of poly-
pharmacology and polypharmacy for the treatment of diseases 
associated with epigenetic alterations and antiviral infections 
caused by the human immunodeficiency virus (HIV), respec-
tively. Both types of diseases are different in nature but both are 
very complex and represent major challenges to design effec-
tive therapeutic treatments.

4.1. Polypharmacology in epigenetics

For diseases with a complex metabolic substrate, such as diabe-
tes, cancer, autoimmune and neurodegenerative disorders, it 
becomes increasingly evident that aiming at a single pharmaco-
logical target would not be an appropriate strategy. It has been 
shown to a variable extent for each of the aforementioned dis-
eases, that epigenetics (inheritable traits that are not encoded 
within the genome; e.g., DNA methylation and histone modifi-
cations) plays an important role in the establishment and main-
tenance of the disease [36]. Epigenetics mechanisms are 
extremely complex, and not yet totally understood, which 
makes quite difficult to design therapies directed against them. 
However, epigenetic drugs are appearing in the clinical scenar-
io, mostly for the treatment of malignant or pre-malignant 
states, with favorable results [37, 38]. Moreover, there is a cur-
rent trend for shifting towards epi-polypharmacology drugs, 
against either more than one epigenetic target or combined epi-
genetic and other targets [4]. Notably, many different epigene-
tic biological targets share a reduced number of cofactors (e.g., 
Zn+2, NAD+, SAM), and thus it is feasible to guide the design 
of cofactor inhibitors with polypharmacologic properties [39]. 
Another approach is the design of hybrid molecules. This strat-
egy has led to the development of pan-demethylase inhibitors 
by synthesis of hybrid molecules containing inhibitors of his-
tone demethylases LSD1 and JmjC, thus generating compounds 
that increase H3K4 and H3K9 methylation levels and produce 
apoptosis selectively to cancer cell lines, with little effect on 
non-cancer cells [40]. In other cases, compounds that are likely 
to inhibit concise epigenetic targets show polypharmacology 
against other epigenetic targets. This was the case of the AMI-5 
analogues synthesized by Mai et al [41]. AMI-5 was described 
previously as a small molecule inhibitor of protein arginine and 
histone lysine methyltransferases, whereas some of its ana-
logues were able to target multiple epigenetic targets, including 
protein and histone methyl and acetyltransferases.

4.2. Charting the epigenetic relevant chemical space

As discussed in the preceding section, epigenetics involves a 
series of complex phenomena involving different enzymes 
that work as readers, erasers and writers. Towards the design 
of compounds directed to multiple epigenetic targets, we have 

initiated a first assessment of the epigenetic relevant chemical 
space (ERCS) focused on DNA methyltransferase inhibitors 
[42]. To further illustrate this point Figure 4 shows a visual 
representation of the chemical space obtained by principal 
component analysis (PCA) of six physicochemical properties 
of data sets of molecules tested as inhibitors of bromodomains, 
histone deacetylases, and DNA methyltransferases. As refer-
ence, Generally Recognized as Safe (GRAS) molecules were 
included. The physicochemical properties computed were 
number of acceptors/donors of hydrogen bonds, number of 
rotatable bonds, molecular weight, octanol/water partition co-
efficient and topological surface area. According to this visu-
alization, different compound data sets populate similar 
regions in the chemical space since they share similar physi-
cochemical characteristics. From this preliminary analysis it 
can be expected that ERCS have a substantial overlap with the 
chemical space of other small molecules used in drug discov-
ery of the food industry.

It is expected that the mapping and interpretation of 
chemical space improves the current knowledge on epi-
genetics. For example, by assessing the properties of epi-com-
pounds it may be possible to develop empirical rules to catalog 
new molecules as epi-modulators and, overall, identify the 
structural characteristics needed to achieve optimal multi-
ple-epi-inhibition [43].

4.3. Polypharmacy for the treatment of HIV-infections 

Acquired Immune Deficiency Syndrome (AIDS) is still a ma-
jor health problem. In 2014 there were 36.9 million people 
living with the human immunodeficiency virus (HIV). The 
drugs available today for the treatment of HIV can be classi-
fied in several classes: reverse transcriptase inhibitors: nucle-
oside (nucleotide) (NRTIs) and non-nucleoside (NNRTIs); 
HIV protease inhibitors, integrase inhibitors, a fusion inhibi-
tor (to prevent the fusion of the viral envelope with the host-
cell membrane), and a CCR5 inhibitor (to block the interaction 
of the virus with one of its receptors at the host cell) [44]. The 
rapid emergence of resistant strains requires the co-adminis-
tration of several drugs with different mechanisms of action 
and hitting different molecular targets. HIV-infected individ-
uals are subject to the Highly Active Antiretroviral Therapy 
(HAART) where two or more drugs are administered in vari-
ous combinations and administration schedules. Current 
treatments require the combination of at least two or three 
active drugs from at least two different classes. Despite the 
fact that this polypharmacy approach is able to reduce the 
viral loads in patients, reducing the incidence of opportunistic 
infections and deaths in AIDS patients, there are concerns of 
serious side effects and the eventual fail of a given treatment 
schedule due to the emergence of resistance. Resistance is 
primarily due to the development of mutations in RT, inte-
grase, and HIV protease. Moreover, Edelman et al. discusses 
that indeed polypharmacy is the next therapeutic challenge in 
HIV [29].
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Figure 4. Visual representation of the chemical space of inhibitors of histone deacetylases (HDACs), bromodomains (BRDs), DNA methyltrans-
ferases (DNMTs), and Generally Recognized as Safe (GRAS) compounds. The principal component analysis was done with six pharmaceutically 
relevant physicochemical properties. The first two principal components (PC) are represented in the figure.

5.  Computational strategies to explore 
polypharmacology

Since the chemical and biological spaces are huge, the relation-
ship between the two spaces is highly complex. Therefore, in 
order to describe, understand, and ideally predict the relation-
ship between the two spaces, efficient computer-based methods 
are necessary. In response to such need chemogenomics has 
emerged as a multidisciplinary research field. A number of rich 
reviews have been published on chemogenomics [45, 46]. In 
this section, we discuss recent developments on chemogenom-
ics followed by representative and specific computational che-
mogenomics methods. 

5.1.  Chemogenomics: intersection of chemical  
and biological spaces

The concept of polypharmacology is at the interface of the 
chemical and biological spaces. Both the chemical and biologi-
cal spaces are intuitive concepts because of its analogy with the 
cosmic universe [47, 48]. There are several definitions of chem-
ical space. For instance, Virshup et al. define chemical space as 
‘an M-dimensional Cartesian space in which compounds are 
located by a set of M physicochemical and/or chemoinformatic 
descriptors’ [49]. The concept of chemical space has a broad 
application in drug discovery that can be classified in two major 
groups: 1) classification of bioactive compounds depending on 
their therapeutic target or associated pharmaceutical effect, and 
2) compound library design and selection. By analogy, biologi-
cal space can be understood as the set of all possible targets. 

Some of them, however, are associated with a desirable chemi-
cal effect, others are related to off-targets leading to adverse 
effects, “orphan targets” (for which no compounds/drug have 
been identified yet), and targets to be identified.

Chemogenomics is a multidisciplinary research field that 
aims to identify the possible associations of all possible ligands 
for all possible targets [50]. To achieve this goal a number of in 
vitro and in in silico approaches are employed [45]. In other 
words, chemogenomics aims to find the association between 
the chemical and target spaces or to characterize the intersec-
tion between chemical and biological spaces. The concept of 
chemogenomics is schematically illustrated in Figure 5. As dis-
cussed in detail elsewhere, chemogenomics is highly associated 
with concepts such as polypharmacology itself, drug repurpos-
ing, in vivo high-throughput screening, pharmaceutical profil-
ing, virtual screening, target fishing, and structure-multiple 
activity relationships (SmAR), (see below).

Chemogenomics data sets are major resources to conduct 
systematic studies to find associations between compound-tar-
get interactions. Table 3 summarizes examples of chemoge-
nomics data sets [51-60]. One of the current limitations of these 
data sets is that they are still rather incomplete. For instance, in 
order to analyze drug-target interaction networks it has been 
analyzed the effect of the lack of data completeness which has 
been called the “Achilles Heel” of drug-target networks [61]. 
However, such databases are rich sources of information to de-
scribe ligand-target interactions and to uncover new target-li-
gand relationships. Other major area of improvement of 
chemogenomics data sets are the so-called ‘five I’s’: data may 
be incomplete, inaccurate, imprecise, incompatible, and/or irre-
producible as recently described by Fourches et al. [46]. 
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Authors of that work proposed a general workflow to conduct 
chemical and biological data curation [46]. Figure 6 illustrates 
in a schematic manner examples of computational approaches 
employed to explore chemogenomics relationships [62-64].

5.2. Structure multiple-activity relationships

Drug discovery based on one molecule one-target approach 
gave rise to biological assays where, typically, one compound 

is associated with one measure of activity. In order to establish 
the corresponding structure-activity relationships, several 
methods have been developed including qualitative and quanti-
tative approaches. Outstanding  examples are the quantitative 
structure-activity relationships – QSAR [65]. A second, more 
recent approach is the activity landscape modeling (ALM) 
aimed to identify the relationship between structure similarity 
(given a set of molecular representation) and activity similarity 

Figure 5. Schematic representation of a chemogenomics matrix; the rows represent all possible compounds and the columns represent all possible 
molecular targets.

Table 3. Representative chemogenomics data sets to explore polypharmacology.

Data set Summary contents Ref.

ChEMBL Contains more than 13 million activity data points corresponding to 1,463,270 compounds 
against 10,774 targets.

[51, 52]

PubChem BioAssay Contains more tan 130 million activity outcomes covering more than 5,000 protein targets. [53]

Binding Database Contains more than 1 million binding data for 7,302 protein targets and 495,498 small molecules. [54]

MOAD Collection of 25,771 high resolution crystal structures, 9141 of them with activity data. [55, 56]

PDBbind Binding data for 14,260 biomolecular complexes contained in the PDB. Noteworthy, 11,987 
correspond to protein-ligand interactions.

[57]

EpiDBase Focused to epigenetic targets. It contains 11,422 activity data corresponding to 5784 ligands 
against 220 epigenetic targets.

[58]

CMAP More than 7,000 gene expression profiles of 1,309 compounds in different cell lines [59]

LINCS L1000 Gene expression signatures of 22 412 unique perturbations (compounds and knockdowns)applied 
to 56 different cellular contexts including human primary cell lines and cancer cell lines

[60]
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[66, 67]. Over the last few years, QSAR, ALM and other com-
putational approaches are being adapted and developed to iden-
tify and predict Structure-multiple Activity Relationships 
(SmARs) that emerge when compound data sets are screened 
across a range of molecular targets [68, 69]. For instance, our 
research group has reported the SmAR of benchmark data sets 
screened across multiple targets of therapeutic interests and 
bioassay data obtained from PubChem [68, 69]. In both case 
studies, structure-activity similarity (SAS) maps, that systemat-
ically relate structure similarity with potency difference for 
each pair of compounds, were adapted to represent multiple ac-
tivity-similarities [67]. Thus, the idea of measuring activity 
similarity can be applied not only to SAS maps but to basically 
any other activity landscape model. 

5.3. Proteochemometric modeling 

Proteochemometric (PCM) modeling can be conceptualized as 
an extension of QSAR modeling that exploits chemogenomic 
data by performing a quantitative evaluation of ligand and 

target structural similarities. As a result, this technique allows 
the simultaneous navigation, inter- and extrapolation in both 
chemical space (i.e. ligands) and biological space (i.e. protein 
target) [70, 71]. By the explicit combination of target and li-
gand information in a single model, PCM is capable to analyze 
and predict SmARs of a set of compounds [70, 71]. It has been 
shown that PCM is better suited for the prediction of SmARs 
than other methods such as fragment-based models [72] and 
multitarget-QSAR using support vector machines (SVM) [73]. 
This technique has been successfully applied to study the 
SmARs of different target families such as GPCRs [62], cyto-
chrome P450 isoforms [74], serine proteases [75], among oth-
ers [76-79]. This method is also well suited for the study of 
kinase selectivity profiles and has been applied to a large num-
ber of data sets [72, 80-83]. In general, predictive models that 
include ligand and target information represent a step forward 
for the analysis of multitarget inhibitors as they usually achieve 
better performance compared to single target methods. All de-
tails of PCM modeling requirements and more applications 
have been reviewed recently [70,71].

Figure 6. Schematic representation of some computational strategies used to explore chemogenomics. Panel A shows an example of proteochem-
ometric model, which combines target and structural similarities to predict activity of new compounds against adenosine receptors [62]. Panel B 
represents target fishing, which is commonly used to identify targets of known compounds such as in the case of acepromazine [63]. Panel C rep-
resents an example of systems pharmacology that was previously used to identify the anti-cancer activity of genistein [64].
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5.4. Target fishing

The goal of the approach commonly called as ‘target fishing” is 
to uncover biomacromolecules or molecular targets that are 
able to bind to a given ligand (or drug). Many techniques, in-
cluding computational approaches, can be adapted to carry out 
the inverse process of traditional virtual screening (Figure 5). In 
other words, the biological target space is interrogated to iden-
tify potential targets for (typically) a small molecule. 

A typical computational technique employed in target fish-
ing is molecular docking giving rise to the ‘inverse docking’ 
strategy [84]. In this technique, introduced by Chen and Zhi 
[85] a given small molecule is docked across a data base of 3D 
macromolecular targets. An alternative computational approach 
used in target fishing is data mining. Other approach is to mea-
sure the molecular similarity between the compound of interest 
and a data set of known ligands of molecular targets (for in-
stance, the structure of co-crystal ligands). These methods and 
other approaches have been recently reviewed in a rich paper 
by Cereto-Massagué et al. [86]. Of note, this review includes 
comprehensive lists of molecular databases and web resources 
useful for in silico target fishing.

As in traditional virtual screening, the chemical com-
pounds can have basically any origin such as novel chemical 
synthesis, commercial libraries or natural products, to name 
few examples. Natural products are, perhaps, one of the most 
studied molecules using this approach [87]. Importantly, in the 
context of polypharmacology, approved drugs or compounds 
in clinical trials can also be subjects of target fishing. In fact, 
prediction of molecular targets has become an active area or 
research in drug repurposing [86]. Target fishing of approved 
drugs can have one or more goals depending on the specific 
study:

 a) To identify the molecular targets of a drug for which is 
uncertain the mechanism of action.

 b) For those drugs with known action mechanism to iden-
tify additional molecular targets that produces a ben-
eficial clinical effect. In other words, to explore in a 
systematic manner polypharmacology.

 c) Uncover off-targets in a systematic manner. This can 
lead to the prediction of secondary effects.

Examples of the application of target fishing using natural 
products as query compounds have been reviewed by Medi-
na-Franco [87]. Several recent examples towards target fishing 
for drug repurposing have also been published [88-90].

5.5.  Data mining of side effects interactions for drug 
repurposing

Drug repurposing through data mining has two principal prem-
ises: 1) there is vast information (e.g., clinical, phenotypical, 
and experimental) regarding the drugs that are intended to be 
repurposed; and 2) the obtained information is sufficient to fit a 
statistical model to predict whether a compound would be 

active against another target or disease. Text similarity is a par-
ticularly developed tool in these settings. 

Through text similarity searching, the scientific literature 
can be mined, in order to link, often indirectly, drugs and dis-
eases by association of terms [91]. A clear example is data min-
ing of adverse effects; this approach assumes that drugs with 
similar adverse (also called off-target) effects may be active 
against similar diseases. Within this pipeline, Campillos et al. 
developed a model for drug repurposing with efficiency rates 
higher than 50% [92]. Notably, comprehensive online databas-
es have been developed to address the problem of disperse in-
formation about drugs; these resources are a result of scientific 
literature mining and contain complete references about differ-
ent compounds [93, 94].

5.6. Systems pharmacology

Systems pharmacology has arisen as an emerging trend strong-
ly connected to polypharmacology. The main similarity be-
tween these two lies in their fundamentals: both try to overcome 
the simplicity of the old-fashioned “one drug, one target” para-
digm. Polypharmacology has often the connotation of “one 
drug, more than one target”, implying both the possibility 
of drug repurposing and the feasibility of multi-target treat-
ments with a sole drug, as we have explored throughout this 
manuscript. However, systems pharmacology is a wider con-
cept than polypharmacology, described by the phrase “one 
treatment, one network”. Thereby, the focus of systems phar-
macology implies the rational design of therapies accounting 
for the overall cellular and physiological complexity, aiming to 
biological networks rather than isolated targets [95]. The two 
main strategies emerging from systems pharmacology are 1) 
those based on simulations in interaction networks validated in 
the scientific literature [96, 97] and 2) approaches exploiting 
high-throughput data such as expression or genetic micro-ar-
rays [98-100]. Both approaches aim to find a differential func-
tion of pathways in pathologic processes compared to healthy 
states, and drugs that can reverse the pathogenic features. 
Therefore, the objective is to develop treatments that avoid the 
studied pathological phenotypes [97,100].

5.7. Polypharmacology fingerprints

As part of the computational strategies to explore and eventual-
ly predict polypharmacology, Pérez-Nueno et al. have devel-
oped a computational polypharmacology fingerprint based on 
the Gaussian ensemble screening approach developed before by 
the same authors [99]. The newly developed fingerprint was de-
signed to encode information related to promiscuity. In that 
work, the fingerprint was built using about 800 established drug 
targets from a public database of known drugs. In a benchmark 
study, the proposed fingerprint was able to predict up to 90% of 
the experimentally known polypharmacology associations 
(with no missing data). Finally, in the work the authors demon-
strated that the proposed fingerprints represent a new approach 
to suggest molecular targets for preclinical compounds and 
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clinical drug candidates. As the authors described in the excel-
lent paper, the polypharmacology fingerprint represent an im-
portant addition to other in silico tools based on different type of 
descriptors that are intended to relate quantitatively biomolecu-
lar targets (e.g., protein receptors) to each other (either by com-
puting similarity between the ligands or between the targets) 
[101].

6. Conclusions

To better understand and potentially predict polypharmacology, 
it is necessary to explore the intersection between the chemical 
and biological spaces. One approach to explore such intersec-
tion is through the emerging research field of chemogenomics. 
To date, there are chemogenomics data sets available to con-
duct drug repurposing, several in the public domain. A major 
challenge while working with these chemogenomic resources 
is that the data may be incomplete. Also, it has been recently 
emphasized the need to conduct curation of the chemical and 
biological information. A broad range of novel computational 
strategies are being developed and implemented to mine, un-
derstand, and predict polypharmacology. For instance, proteo-
chemometric modeling and multi-target activity landscapes 
enable the simultaneous analysis of chemical and biological 
relationships. Using structure or ligand-based approaches, tar-
get fishing aims to identify potential targets for a given ligand. 
Data mining of side effects and systems pharmacology are fur-
ther examples of novel approaches employed in polypharma-
cology. Polypharmacology is a promising avenue in emerging 
and complex drug discovery strategy such as the development 
of epi-drugs.
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