Identification by MALDI-TOF MS of Environmental Bacteria with High Potential to Degrade Pyrene

Authors

  • Hortencia Silva-Jiménez Universidad Autónoma de Baja California
  • Cynthia Lizzeth Araujo-Palomares Universidad Autónoma de Baja California
  • José Vinicio Macías-Zamora Universidad Autónoma de Baja California
  • Nancy Ramírez-Álvarez
  • Bianey García-Lara University of Guanajuato
  • Alma Rosa Corrales-Escobosa University of Guanajuato

DOI:

https://doi.org/10.29356/jmcs.v62i2.411

Keywords:

PAHs, hydrocarbonoclastic bacteria, identification, MALDI-Biotyper, principal component analysis

Abstract

An alternative to remove polycyclic aromatic hydrocarbons (PAHs) of the environment is using hydrocarbonoclastic bacteria. The aim of this work was to study the bacterial diversity of indigenous isolates with potential to degrade pyrene. We used MALDI-Biotyper (Bruker Daltonics) as a powerful analytical tool for identification. Bacteria were isolated from surface seawater and marine sediments samples of three sites from the coast of Rosarito Port, B.C., Mexico. Total concentration of PAHs in collected samples was quantified by GC-MS, showed values ranged 0.461-0.525 ng mL-1 and of 74 -266 ng g-1 in seawater and sediments samples, respectively. A total of 52 bacteria with capacity to grow in 25 mg L-1 pyrene as sole carbon and energy source were taxonomically identified and classified by MALDI-Biotyper system by comparing the mass spectra with library and/or to use chemometric tools as Principal Components Analysis (PCA) and Composite Correlation Index (CCI) to evaluate possible differences to isolate level. The identified isolates were represented by three phylogenetic groups: Firmicutes, Actinobacteria and Proteobacteria. Of these isolates, Kocuria strains appear to be excellent candidates to continue PAHs degradation studies.

Downloads

Download data is not yet available.

Author Biographies

Hortencia Silva-Jiménez, Universidad Autónoma de Baja California

Instituto de Investigaciones Oceanológicas

Cynthia Lizzeth Araujo-Palomares, Universidad Autónoma de Baja California

Instituto de Investigaciones Oceanológicas

José Vinicio Macías-Zamora, Universidad Autónoma de Baja California

Instituto de Investigaciones Oceanológicas

Bianey García-Lara, University of Guanajuato

Chemistry Department

Alma Rosa Corrales-Escobosa, University of Guanajuato

Chemistry Department

References

Samanta S. K.; Singh O. V.; Jain R. K. Trends Biotechnol. 2002, 20, 243-248.

Seo J. S; Keum Y. S.; Li Q.X. Int J Environ Res Public Health. 2009, 6, 278-309.

Macias-Zamora J. V.; Melendez-Sanchez A. L.; Ramirez-Alvarez N.; Gutierrez-Galindo E. A; Orozco-Borbon M.V. Environ Monit Assess. 2014, 186,1051-1061.

Macias-Zamora J. V; Mendoza-Vega E.; Villaescusa-Celaya J. A. Chemosphere. 2002, 46, 459-468.

Fuentes S.; Barra B.; Caporaso J. G.; Seeger M. Appl Environ Microbiol. 2015, 82, 888-896.

Fuentes S.; Mendez V.; Aguila P.; Seeger M. Appl Microbiol Biotechnol. 2014, 98, 4781-4794.

Guermouche M'rassi A.; Bensalah F.; Gury J.; Duran R. Environ Sci Pollut Res Int. 2015, 22, 15332-15346.

Conlan S.; Kong H.H.; Segre J.A. PloS one. 2012, 7, e47075

Sandrin T.R.; Demirev P.A. Mass Spectrom. Rev. 2017, 37, 321-349

Bader O. Proteomics. 2013, 13(5),788-799.

Murphy B.; Lingam S.; Richter B.; Carlson R. Thermo Fisher Scientific Inc Application Note 1025. 2012, Avilabe from http://www.dionex.com/en-us/webdocs/113838-AN1025-ASE-PCBs-PAHs-mussel-tissue-soil-AN70253_E.pdf.:1-5.

Puy-Alquiza M.J.; Reyes V.; Wrobel K.; Wrobel K.; Torres Elguera J.C.; Miranda-Aviles R. Environ Sci Pollut Res Int. 2016, 23, 11947-11956.

Schumaker S.; Borror C..; Sandrin T.R. Rapid Commun Mass Spectrom. 2012, 26, 243-253.

Maier T.; Klepel S.; Renner U.; Kostrzewa M. Nat. Methods. 2006, 3, 1-2.

Sauget M.; Valot B.; Bertrand X.; Hocquet D. Trends Microbiol. 2017, 25, 447-455.

Vithanage N. R.; Bhongir J.; Jadhav S. R.; Ranadheera C. S.; Palombo E. A.; Yeager T. R.; Datta N. J Proteome Res. 2017, 16, 2188-2203.

Qiu Y-W.; Zhang G.; Liu G-Q.; Guo L-L.; Li X-D.; Wai O. Estuar Coast Shelf Sci. 2009, 83, 60-66.

Keshavarzifard M.; Moore F.; Keshavarzi B.; Sharifi R. Mar. Pollut. Bull. 2017, 123, 373-380.

Liu L.Y.; Wang J. Z.; Wei G. L.; Guan Y. F.; Zeng E. Y. Environ Pollut. 2012, 167, 155-162.

Kafilzadeh F. Egypt J Aquat Res. 2015, 41, 227-231.

Nikolaou A.; Kostopoulou M.; Lofrano G.; Meric S. in: Determination of PAHs in marine sediments: Analytical methods and environmental concerns, Vol. 11, Ed. Global NEST Journal; 2009, 391–405.

Gupte A.; Tripathi A.; Patel H.; Rudakiya D.; Gupte S. Open Biotechnol J., 2016, 10, 363-378.

Kuppusamy S.; Thavamani P.; Venkateswarlu K.; Lee Y. B.; Naidu R.; Megharaj M. Chemosphere, 2017, 168, 944-968.

IARC Monogr Eval Carcinog Risks Hum. 2010; 92:1-853.

Kanaly R.A.; Harayama S. J. Bacteriol. 2000, 182, 2059-2067.

Zhong Y.; Luan T.; Lin L.; Liu H.; Tam N. F. Bioresour Technol. 2011, 102, 2965-2972.

Kim S. J.; Kweon O.; Sutherland J. B.; Kim H. L.; Jones R. C.; Burback B. L.; Graves S. W.; Psurny E.; Cerniglia C. E. Appl Environ Microbiol. 2015, 81, 4263-4276.

Badejo A. C.; Choi C. W.; Badejo A. O.; Shin K. H.; Hyun J. H.; Lee Y. G.; Kim S. I.; Park K.S.; Kim S. H.; Jung K. H.; Chung Y. H.; Chai Y. G. Biodegradation, 2013, 24, 741-752.

Duarte M.; Nielsen A.; Camarinha-Silva A.; Vilchez-Vargas R.; Bruls T.; Wos-Oxley M.L.; Jauregui R.; Pieper D. H. Environ Microbiol. 2017, 19, 2992-3011.

Wanapaisan P.; Laothamteep N.; Vejarano F.; Chakraborty J.; Shintani M.; Muangchinda C.; Morita T.; Suzuki-Minakuchi C.; Inoue K.; Nojiri H.; Pinyakong O. J Hazard Mater. 2018, 342, 561-570.

Oberle M.; Wohlwend N.; Jonas D, Maurer F. P.; Jost G, Tschudin-Sutter S.; Vranckx.; Egli A. PloS one, 2016, 11, e0164260.

Timperio A. M.; Gorrasi S.; Zolla L.; Fenice M. PloS one, 2017, 12(7), e0181860.

Moscoso F.; Teijiz I.; Deive F. J., Sanroman M. A. Bioresour Technol. 2012, 119, 270-276.

Margesin R.; Moertelmaier C.; Mair J. Int Biodeterior Biodegradation. 2013, 84,185-191.

Bourguignon N.; Isaac P.; Alvarez H.; Amoroso M.J.; Ferrero M. A. J Basic Microbiol. 2014, 54, 1288-1294.

Mohamed H.; Miloud B.; Zohra F.; Garcia-Arenzana J. M.; Veloso A.; Rodriguez-Couto S. Int J Mol Cell Med. 2017, 6, 109-120.

Emami K.; Nelson A.; Hack E.; Zhang J.; Green D. H.; Caldwell G. S.; Mesbahi E. Front Microbiol, 2016, 7, 104.

Doughari H. J.; Ndakidemi P. A.; Human I. S.; Benade S. Microbes Environ. 2011, 26, 101-112.

Zanaroli G.; Di Toro S.; Todaro D.; Varese G. C.; Bertolotto A.; Fava F. Microb Cell Fact. 2010, 9, 10.

Wu M. S.; Collier S.; Liu P. Y.; Lee Y. T.; Kuo S. C.; Yang Y. S.; Chen T. L.; Shi Z. Y.; Lin C. F. J Microbiol Methods. 2017, 140, 58-60

Sousa C.; Botelho J.; Silva L.; Grosso F.; Nemec A.; Lopes J.; Peixe L. Int J Med Microbiol. 2014, 304, 669-677.

Stackebrandt E.; Koch C.; Gvozdiak O.; Schumann P. Int J Syst Bacteriol. 1995, 45, 682-692.

Li F.; Guo S.; Hartog N.; Yuan Y.; Yang X. Biodegradation. 2016, 27, 1-13.

Ahmed R.; Ahmed N.; Michael Gadd G. Afr. J. Biotechnol. 2010, 9, 3611–3617.

Ghosh I.; Jasmine J.; Mukherji S. Bioresour Technol. 2014, 166, 548-558.

Tauler M.; Vila J.; Nieto J.M.; Grifoll M. Appl Microbiol Biotechnol. 2016, 100, 3321-3336.

Santos I. C.; Martin M. S.; Carlton D. D.; Amorim C. L.; Castro P. M. L.; Hildenbrand Z. L.; Schug K. A. Microorganisms. 2017, 5, 47.

Downloads

Published

2018-06-06